Prysm

Security Assessment
October 6, 2020

Prepared For:
Raul Jordan | Prysmatic Labs
raul@prysmaticlabs.com

Preston Van Loon | Prysmatic Labs
preston@prysmaticlabs.com

Danny Ryan | Ethereum Foundation
danny@ethereum.org

Prepared By:
Johanna Ratliff | Trail of Bits
johanna.ratliff@trailofbits.com

Sam Caccavale | Trail of Bits
sam.caccavale@trailofbits.com

Sam Moelius | Trail of Bits
sam.moelius@trailofbits.com

mailto:raul@prysmaticlabs.com
mailto:preston@prysmaticlabs.com
mailto:danny@ethereum.org
mailto:johanna.ratliff@trailofbits.com
mailto:sam.caccavale@trailofbits.com
mailto:sam.moelius@trailofbits.com

Executive Summary

Project Dashboard

Code

Maturity Evaluation

Engagement Goals

Coverage

Recommendations Summary

Sh

ortterm
Long term

Findings Summary

1

. Failure to propagate errors in beacon-chain

. Data race in featureconfig

. Context leak in validator client

. Variable shadowing in beacon-chain history regeneration code

. Data race in beacon-chain syncing code

. Failure to error check could cause undefined behavior

. Improvements needed to Bazel end-to-end testing documentation

00 |N O U | W N

. Raw password logged

9.

Dependencies are out of date

10

. Code relies on two dependencies with OSS advisories

11

. Overwrite of powchain.Service.preGenesisState even when deposits cannot be

processed

12

. Excessive memory usage by snappy.Decode

13

. Improper use of recover in hashutil.HashProto

14. Improper use of recover in powchain.Service

15

. Premature loop exit causes validator deposits to be missed

16

. Proposer indices cannot be retrieved from cache

17

. Shuffled list is not added to cache if proposer indices are present

18

. Inefficiencies surrounding use of cache

19

.Wrong domain used in helpers.SlotSignature

20.

Wrong loop exit condition in store.ForkChoice.AncestorRoot

21

. Handler on_tick unimplemented

22.

Hardcoded contract bytecode

23

. Files and directories created with os.MkdirAll and ioutil.WriteFile are not ensured to

ha

ve correct permissions

24. Response body not closed in tests

25

. Password guesses should be limited to prevent brute force

© 20

20 Trail of Bits Prysm Assessment | 1

26. Premature exit under certain conditions in blockchain.Service.ancestor

A. Vulnerability Classifications

B. Code Maturity Classifications

C. Code Quality Recommendations

D. Ineffectual Assienments

© 2020 Trail of Bits Prysm Assessment | 2

Executive Summary

From September 8 through October 2, 2020, the Ethereum Foundation and Prysmatic Labs
engaged Trail of Bits to review the security of Prysm. Trail of Bits conducted this
assessment over the course of 8 person-weeks with three engineers working from
245c18784eda370ea3218e8704651edad763978d from the Prysm repository.

During the first week, Trail of Bits familiarized ourselves with the codebase build and test
systems, investigated fuzzing targets, and ran the existing fuzzers with no crashes. We ran
automated tools to produce jumping off points for investigation including, but not limited
to, gosec, errcheck, ineffassign, semgrep, and the unit tests with the race detector
enabled.

Week two included shadowing investigation, arithmetic operation and overflow checks, and
manual review of the slashing code. We also inspected the results from the previous weeks’
tools with deeper scrutiny.

Week three Trail of Bits continued assessing the slashing and slashing protection code. We
began mapping Eth2.0 specs against the project and manual code reading of the
beacon-chain/core package. Finally, week three encompassed manual checks for best Go
practices and known libraries whose misuse could produce bugs.

During the fourth week, we continued to review the Eth2.0 specification, looking for areas
where Prysm may have diverged. We focused on the p2p and sync packages for potential
denial of service attacks. Finally, we revisited the copy-on-write mechanism used for
beacon-chain states.

Our efforts resulted in 26 findings ranging from high to informational severity. The single
high-severity issue describes a failure scenario that causes a user’s raw password to be
logged (TOB-PRYSM-008). A few interesting medium-severity issues include missed deposits
due to a premature loop exit (TOB-PRYSM-015) and preserving genesis state even on
method failure (TOB-PRYSM-011).

In addition to our findings, there is an appendix (C. Code Quality Recommendations) that
addresses issues that have not produced bugs, but are of concern.

Overall, the Prysm project can improve by focusing on best Go practices and tools to
support them in order to remove risk of logic errors. We recommend extending the test
suite to include more failing cases and develop more fuzzers to improve coverage of
multiple scenarios.

© 2020 Trail of Bits Prysm Assessment | 3

https://github.com/prysmaticlabs/prysm/tree/245c18784eda370ea3218e8704651edad763978d
https://github.com/securego/gosec
https://github.com/kisielk/errcheck
https://github.com/gordonklaus/ineffassign
https://github.com/returntocorp/semgrep

Project Dashboard

Application Summary

Name Prysm

Version 245c18784eda370ea3218e8704651edad763978d
Type Go

Platforms POSIX

Engagement Summary

Dates September 8 - October 2, 2020
Method Whitebox

Consultants Engaged 3

Level of Effort 8 person-weeks

Vulnerability Summary

Total High-Severity Issues 1]
Total Medium-Severity Issues 10 |WEEEEEEEEN
Total Low-Severity Issues 7 EEEN
Total Informational-Severity Issues 7 EEEEEEEN
Total Undetermined-Severity Issues 1]

Total | 26

Category Breakdown

Access Controls 2 |(mm
Auditing and Logging 1]
Cryptography 1 (]

Data Validation 5 EEEEE
Denial of Service 5 EEEEE
Documentation 1]

Error Reporting 4 EEEE
Patching 2 mm

© 2020 Trail of Bits Prysm Assessment | 4

Timing 2 mm
Undefined Behavior 3 EEE
Total [26

© 2020 Trail of Bits

Prysm Assessment | 5

Code Maturity Evaluation

Category Name

Access Controls

Arithmetic

Assembly Use

Centralization

Upgradeability

Function
Composition

Description

Moderate. The separation of responsibilities on an architecture
level was clearly defined. However, on a more granular level the
code was inconsistent in how DRY principle was intended.
Concerning examples noted in the code quality section include
single use functions defined in odd scopes that confused readability.

Front-Running

Monitoring

Specification

Testing &
Verification

Further Investigation Required. Front-running opportunities could
arise by deviating from the spec or by adhering to it (i.e., if the
specification itself was flawed). No opportunities of the former kind
were noted. Further investigation would be required for the latter.

Moderate. When run against certain undocumented operating
systems, the build failed. Additionally, on successful build, the eth1
chain had starting issues during the end-to-end tests. The fuzzers
ran successfully and finally, there were a few common memory
leaks in the tests.

© 2020 Trail of Bits

Prysm Assessment | 6

Engagement Goals

The engagement was scoped to provide a security assessment of the beacon node,
slashing, the validator client, and the beacon-chain/core package.

Specifically, we sought to answer the following questions:

Is there a divergence in the code from the intended Eth2.0 specifications?
Is the core beacon-node code vulnerable to consensus faults or other critical
problems such as arithmetic overflows?

e Are there any logic errors in the block processing path from the moment a block is
received in the beacon node and processed by the blockchain package?
Does the slasher implementation contain flawed assumptions or risk false positives?
What risk of denial-of-service attacks exist in the p2p and/or sync packages?

Coverage

Alignment with Eth2.0 Specifications. Through a manual investigation of the core
components and their intent to ensure they aligned with the Eth2.0 specifications as read.

beacon-chain/core. Began with automated analysis tools such as gosec, ineffassign,
errcheck, and go vet to surface any common Go issues. Continued with extensive manual
code reading for logic validation and specific checks for Go issues, including concurrency
behavior and shadowing issues.

Beacon Node. Automated analysis tools such as gosec, ineffassign, errcheck, and go vet to
surface any common Go issues. Manually reviewed.

Block Processing. Subject to static analysis by gosec, errcheck, ineffassign, shadow, and
semgrep (under various configurations). Unit tests verified to pass. Unit tests run: with Go’s
race detector enabled, with all uses of recover disabled, and with arithmetic operations
instrumented to check for overflow. Fuzzed using existing fuzzers, but with arithmetic
operations instrumented to check for overflow. Manually reviewed.

Concurrency. Using automated analysis tools such as go test -race and gosec, we
discovered locations that had the potential to contain concurrency bugs. We then dove
deeper into those scenarios for manual analysis to validate the assumptions made.
Additionally, we investigated every goroutine that was created to ensure Go best practices
in use of concurrency.

© 2020 Trail of Bits Prysm Assessment | 7

Slashing. Subject to static analysis by gosec, errcheck, ineffassign, shadow, and semgrep
(under various configurations). Unit tests verified to pass. Unit tests run: with Go's race
detector enabled, with all uses of recover disabled, and with arithmetic operations
instrumented to check for overflow. Manually reviewed.

Validator Client. Automated analysis tools such as gosec, ineffassign, errcheck, and go vet
to surface any common Go issues. Manually reviewed.

Dependencies. Checked for currency using go-mod-outdated. Checked for outstanding
CVEs using nancy.

© 2020 Trail of Bits Prysm Assessment | 8

Recommendations Summary

This section aggregates all the recommendations made during the engagement. Short-term
recommendations address the immediate causes of issues. Long-term recommendations
pertain to the development process and long-term design goals.

Short term

0 Adjust the return statements in Figures 1.1 through 1.4 to return an appropriate
error. This will prevent callers from assuming that returned values are computed without
error. TOB-PRYSM-001

0 Protect access to the featureConfig global variable with a RWMutex and have
featureconfig.Get return a copy of the Flags struct rather than a pointer to it. This
will eliminate a data race that could lead to undefined behavior or data corruption.
TOB-PRYSM-002

0 Adjust the loop beginning in Figure 3.1 to use defer span.End(), as the official
OpenCensus documentation suggests. This will eliminate a Context leak that could lead
to denial-of-service conditions. Consider adopting this pattern in
beacon-chain/sync/pending_blocks_queue.go, as well. TOB-PRYSM-003

0 Eliminate the use of variable shadowing in Figures 4.1 and 4.2. This will help ensure
that the code produces correct results, and will improve the code’s readability.
TOB-PRYSM-004

0 Adjust the declaration of sync.Service so that chainStarted uses an atomic data
type rather than a bool. This will stop the Go race detector from producing reports
concerning chainStarted, potentially enabling legitimate races to be found.
TOB-PRYSM-005

0 Document the operating systems that are explicitly supported to run these tests.
This will ensure users set up their own environment that matches a known good state and
don't try to run the tests locally in an unsupported environment. TOB-PRYSM-007

0 Remove any logging of passwords to replace it with a failure to access or similar.
TOB-PRYSM-008

0 Update dependencies to the latest version wherever possible. Verify that all unit
tests pass following such updates. Using out-of-date dependencies could mean critical bug
fixes are missed. TOB-PRYSM-009

© 2020 Trail of Bits Prysm Assessment | 9

https://golang.org/pkg/sync/#RWMutex

0 Upgrade to the most recent versions of 1ibp2p/go-1ibp2p-kad-dht (v@.10.0) and
k8s.io/apimachinery (v11.0.0). Doing so will eliminate reliance on vulnerable code.
TOB-PRYSM-010

0 Store the result of the call to ProcessPreGenesisDeposits in a local variable, and
use it to set s.preGenesisState only if err is not nil. This will prevent previous work
reflected in s.preGenesisState from being thrown away. TOB-PRYSM-011

0 Consider adding a call to snappy.DecodedLen in kv.decode, similar to the one in
ssz.SszNetworkEncoder.DecodeGossip. This will provide defense in depth should an
attacker find a way to write data into a beacon node’s key-value store. TOB-PRYSM-012

0 Move the use of recover from hashutil.HashProto to TestHashProtoFuzz. Verify that
the error is a nil-pointer dereference. These steps will help ensure that this particular use
of recover does not unintentionally suppress errors. TOB-PRYSM-013

0 Adjust the implementation of goodFetcher.HeaderByNumber so that it returns an
error when g.backend.Blockchain().CurrentHeader() is nil. This will eliminate a
nil-pointer dereference that currently exists in the TestLatestMainchainInfo_OK test.
TOB-PRYSM-014

0 If a depositor’'s public key cannot be processed, skip over it and continue
processing the remaining deposits. This will eliminate a bug that currently allows valid
deposits to be ignored. TOB-PRYSM-015

0 Set a Committees struct’s Seed when inserting proposer indices into the cache. This
will eliminate a bug that currently makes the struct unretrievable. TOB-PRYSM-016

0 When inserting a shuffled list into the cache, add it to an existing Committees struct
if one already exists with the relevant seed. This will eliminate a bug that currently
causes a node to build Committees structs unncessarily. TOB-PRYSM-017

0 Refactor BeaconProposerIndex, UpdateProposerIndicesInCache, and
precomputeProposerIndices so that the work done to compute the active validator
indices and the proposer index for one slot is not duplicated. Be careful to avoid
introducing data races involving the presence of data in the cache in the process. These
steps will improve the overall efficiency of the cache. TOB-PRYSM-018

0 Adjust SlotSignature so that it uses DOMAIN_SELECTION_PROOF for selection proofs,
rather than DOMAIN_BEACON_ATTESTER. This will bring the code in-line with the Eth 2.0
current specification. TOB-PRYSM-019

© 2020 Trail of Bits Prysm Assessment | 10

0 Adjust the AncestorRoot’s for loop condition so that it accounts for i not within the
range of f.store.nodes’s indices. This will eliminate potential “index out of range”
errors that could be used for denial of service. TOB-PRYSM-020

0 Implement the on_tick method from the Eth 2.0 specification. This will eliminate a
discrepancy that currently exists between the Eth 2.0 specification and Prysm'’s
implementation of it. TOB-PRYSM-021

0 Read in the bytecode for deposits only from the bytecode.bin file that currently
stores it. Update pipelines so that only automation changes this value and it is never
expected to be edited directly by developers. We also recommend putting in a git
pre-commit hook to prevent developers from committing to this file. TOB-PRYSM-022

0 When using os.MkdirAll, check all directories in the path and validate their owner
and permissions before performing operations on them. This will help avoid situations
where sensitive information is written to a pre-existing attacker-controlled path.
TOB-PRYSM-023

0 Validate that all file handlers are closed to avoid putting undue stress on the
garbage collector. TOB-PRYSM-024

0 Limit the number of password guesses a user can attempt by implementing an
exponential backoff strategy on password acceptance timing. TOB-PRYSM-025

0 Adjust ancestor so that if s.forkChoiceStore.AncestorRoot returns a "node index
out of range" error, beaconDB is queried. This will eliminate a bug that can cause
ancestor to incorrectly return an error. TOB-PRYSM-026

© 2020 Trail of Bits Prysm Assessment | 11

https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/contracts/deposit-contract/bytecode.bin

Long term

0 Ensure that unit tests are written for each of their “sad” (i.e., failing) paths. This will
help to expose functions that do not properly report errors. TOB-PRYSM-001

0 Regularly run your unit tests with Go’s race detector enabled. Doing so can help
reveal similar bugs in the future. TOB-PRYSM-002, TOB-PRYSM-005

0 Ensure that the defer span.End() pattern is used where span is involved. This will
help prevent denial-of-service conditions. TOB-PRYSM-003

0 Regularly run Go's shadow tool over your codebase. These bugs are flagged by shadow,
and regularly running shadow could reveal similar ones. TOB-PRYSM-004

0 Regularly run ineffassign over the codebase as a part of a pre-commit action. All
results should either be explicitly underscored or used. TOB-PRYSM-006

0 Include a Dockerfile of install and setup against a base image that can consistently
run the end to end tests independent of operating system or local dependencies. This
instills confidence from the community in the open source project. TOB-PRYSM-007

0 Validate that any engagements with passwords are closely monitored and
restricted. Consider using Vault for management of sensitive information. TOB-PRYSM-008

0 Regularly run go-mod-outdated over the codebase to help ensure that the project
stays up to date with its dependencies. TOB-PRYSM-009

0 Regularly run nancy over the codebase to reveal vulnerable dependencies.
TOB-PRYSM-010

0 Whenever an error could be returned, avoid assigning to a field before first
checking for an error. Such practice could result in unintentional state modifications.
TOB-PRYSM-011

0 Protect calls related to serialization/deserialization with additional error checks.
Such functions are a common source of vulnerabilities and deserve elevated scrutiny.
TOB-PRYSM-012

0 Regularly run your unit tests with all uses of recover disabled. Verify that all panics
that would have been recovered are expected. These steps will help ensure that Prysm’s
uses of recover, generally, do not unintentionally suppress errors. TOB-PRYSM-013,
TOB-PRYSM-014

© 2020 Trail of Bits Prysm Assessment | 12

https://crmbusiness.wordpress.com/2015/04/29/developers-need-to-stop-being-so-happy/
https://yourbasic.org/golang/gotcha-shadowing-variables/
https://github.com/gordonklaus/ineffassign
https://github.com/psampaz/go-mod-outdated
https://github.com/sonatype-nexus-community/nancy

0 Be wary of returning from inside of a loop on an error condition. Such a practice is a
frequent source of errors. TOB-PRYSM-015

0 Regularly run Go’s shadow tool over your codebase. This bug is due, in part, to variable
shadowing in a unit test. Regularly running Go's shadow can help to reveal such problems.
TOB-PRYSM-016

0 Consider ways that the cache code may be consolidated. This bug is, in part, the
result of a discrepancy in how the cache handled proposer indices vs. shuffled indices.
Consolidating that code might have prevented this bug. Furthermore, you may want to
include other types of data in the cache in the future. Consolidating the cache code could
help to facilitate such extensions. TOB-PRYSM-017

0 As new types of data are added to the cache, avoid duplicating computations
across functions that update the cache and their callers. This will help maintain the
cache’s effectiveness. TOB-PRYSM-018

0 When reviewing PRs, consider not only the code in the PR, but other code to which
similar changes should be applied. This issue appears to be the result of an incomplete
fix. A more expansive approach to PR review could help to prevent similar situations.
TOB-PRYSM-019

0 Consider developing a fuzzer for AncestorRoot or one of its predecessors in the call
graph. Fuzzing might have caught this bug, and could catch similar bugs in the future.
TOB-PRYSM-020

0 Maintain a mapping of Eth 2.0 function to their corresponding implementations in
Prysm. This will make it easier for developers to understand how Prysm implements the
specification. It will also help to identify gaps in the implementation. TOB-PRYSM-021

0 Remove any manual processes required for releasing code and automate for
consistency and reliability purposes. TOB-PRYSM-022

0 Enumerate files and directories for their expected permissions overall, and build
validation to ensure appropriate permissions are applied before creation and upon
use. Ideally, this validation should be centrally defined and used throughout the
applications as a whole. TOB-PRYSM-023

0 Standardize idiomatic Go practices such as proper handling of response bodies.
TOB-PRYSM-024

© 2020 Trail of Bits Prysm Assessment | 13

https://yourbasic.org/golang/gotcha-shadowing-variables/

0 Implement monitoring surrounding excessively high password guess frequency
against an account and consider locking it until the user can validate their identity.
TOB-PRYSM-025

0 Require additional review of functions whose implementations do not obviously
match the specification. For example, as can be seen from Figure 26.1, Prysm’s ancestor
does not directly correspond to the specification’s get_ancestor, though they are meant to
achieve the same functionality. Functions such as ancestor warrant additional scrutiny.
TOB-PRYSM-026

© 2020 Trail of Bits Prysm Assessment | 14

Findings Summary

| Title Type Severity

1 Failure to propagate errors in Error Reporting | Low
beacon-chain

2 | Data race in featureconfig Timing Low

3 Context leak in validator client Denial of Medium

Service

4 | Variable shadowing in beacon-chain Undefined Medium
history regeneration code Behavior

5 | Data race in beacon-chain syncing code Timing Informational

6 | Failure to error check could cause Error Reporting | Informational
undefined behavior

7 Improvements needed to Bazel Documentation | Informational
end-to-end testing documentation

8 | Raw password logged Auditing and High

Logging

9 | Dependencies are out of date Patching Informational

10 | Code relies on two dependencies with Patching Low
OSS advisories

11 | Overwrite of Denial of Medium
powchain.Service.preGenesisState Service
even when deposits cannot be processed

12 | Excessive memory usage by Denial of Informational
snappy .Decode Service

13 | Improper use of recover in Error Reporting | Informational

hashutil.HashProto

© 2020 Trail of Bits

Prysm Assessment | 15

14 | Improper use of recover in Error Reporting | Low
powchain.Service

15 | Premature loop exit causes validator Data Validation | Medium
deposits to be missed

16 | Proposer indices cannot be retrieved Data Validation | Medium

from cache

17

Shuffled list is not added to cache if
proposer indices are present

Data Validation

Informational

18 | Inefficiencies surrounding use of cache Data Validation | Informational
19 | Wrong domain used in Cryptography Medium
helpers.SlotSignature
20 | Wrong loop exit condition in Denial of Medium
store.ForkChoice.AncestorRoot Service
21 | Handler on_tick unimplemented Undefined Undetermined
Behavior
22 | Hardcoded contract bytecode Data Validation | Medium
23 | Files and directories created with Access Controls | Low
os.MkdirAll and ioutil.WriteFile are not
ensured to have correct permissions
24 | Response body not closed in tests Denial of Low
Service
25 | Password guesses should be limited to Access Controls | Medium
prevent brute force
26 | Premature exit under certain conditions Undefined Medium
in blockchain.Service.ancestor Behavior

© 2020 Trail of Bits

Prysm Assessment | 16

1. Failure to propagate errors inbeacon-chain

Severity: Low Difficulty: Undetermined

Type: Error Reporting Finding ID: TOB-PRYSM-001
Target: beacon-chain

Description

Many locations within the beacon-chain subdirectory fail to return applicable errors and
instead return a nil error value. Failing to report errors can hide an ongoing attack, or make
it difficult to discover the source of an error.

Examples where errors are not propagated appear in Figures 1.1 through 1.4.

func UpdateProposerIndicesInCache(state *stateTrie.BeaconState, epoch uint64) error {
indices, err := ActiveValidatorIndices(state, epoch)
if err I= nil {
return nil

}

Figure 1.1: beacon-chain/core/helpers/committee.go#L349-1353.

func ComputeForkDigest(version []byte, genesisValidatorsRoot []byte) ([4]byte, error) {
dataRoot, err := computeForkDataRoot(version, genesisValidatorsRoot)
if err = nil {
return [4]byte{}, nil
}

Figure 1.2: beacon-chain/core/helpers/signing_root.go#L246-1250.

func ComputeProposerIndex(bState *stateTrie.BeaconState, activeIndices [Juint64, seed
[32]byte) (uint64, error) {

v, err := bState.ValidatorAtIndexReadOnly(candidateIndex)
if err I= nil {
return @, nil

¥
Figure 1.3: beacon-chain/core/helpers/validators.go#L232-1254.

func (kv *Store) saveArchivedInfo(ctx context.Context,
currentState *stateTrie.BeaconState,
blocks []*ethpb.SignedBeaconBlock,

) error {

lastBlocksRoot, err := blocks[len(blocks)-1].Block.HashTreeRoot()
if err I= nil {
return nil

}
Figure 1.4: beacon-chain/db/kv/regen_historical_states.go#L217-1232.

Exploit Scenario

© 2020 Trail of Bits Prysm Assessment | 17

https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/core/helpers/committee.go#L349-L353
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/core/helpers/signing_root.go#L246-L250
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/core/helpers/validators.go#L232-L254
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/db/kv/regen_historical_states.go#L217-L232

Eve discovers an exploitable bug in the Prysm’s beacon-chain implementation and
attempts to exploit it on Alice’s machine. Because errors are not properly reported, Alice is
initially unaware that an attack is occuring. Once she becomes aware, she is unable to
determine the source of the errors.

Recommendation

Short term, adjust the return statements in Figures 1.1 through 1.4 to return an
appropriate error. This will prevent callers from assuming that returned values are
computed without error.

Long term, as new functions are added to the code base, ensure that unit tests are written
for each of their “sad” (i.e., failing) paths. This will help to expose functions that do not
properly report errors.

© 2020 Trail of Bits Prysm Assessment | 18

https://crmbusiness.wordpress.com/2015/04/29/developers-need-to-stop-being-so-happy/

2.Dataracein featureconfig

Severity: Low Difficulty: High
Type: Timing Finding ID: TOB-PRYSM-002
Target: shared/featureconfig/config.go

Description

The featureconfig package contains a global variable featureConfig (with a capital ‘C’)
that points to a Flags struct. This variable is modified in some threads and read in others
with no synchronization. Unsynchronized, concurrent access to shared resources can lead
to undefined behavior and possibly data corruption.

The featureConfig variable is set by calling Init, InitWithReset, or the “reset” function
returned by InitWithReset. The variable is read by calling featureconfig.Get (Figure 2.1).
An example where featureconfig.Get is called from a separate thread appears in Figure
2.2. A second example appears in Figures 2.3 through 2.5.

// Get retrieves feature config.
func Get() *Flags {
if featureConfig == nil {
return &Flags{}
¥

return featureConfig

}

// Init sets the global config equal to the config that is passed in.
func Init(c *Flags) {
featureConfig = ¢

}
// InitWithReset sets the global config and returns function that is used to reset
configuration.
func InitWithReset(c *Flags) func() {

resetFunc := func() {

Init(&Flags{})

}

Init(c)

return resetFunc
}

Figure 2.1: shared/featureconfig/config.go#L100-L112,

go func() {
recalibrateRoughtime()

30

func recalibrateRoughtime() {
t0 := time.Now()

© 2020 Trail of Bits Prysm Assessment | 19

https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/shared/featureconfig/config.go#L100-L112

func Now() time.Time {
if featureconfig.Get().EnableRoughtime {
return time.Now().Add(offset)

}

Figure 2.2: shared/roughtime/roughtime.go#L45-1117.

func (s *Service) Start() {

runutil.RunEvery(s.ctx, syncMetricsInterval, s.updateMetrics)

Figure 2.3: beacon-chain/sync/service.go#L144-1162.

func RunEvery(ctx context.Context, period time.Duration, f func()) {
éé'Func() {
ce ‘0
3O

Figure 2.4: shared/runutil/every.go#L15-131.

func (s *Service) updateMetrics() {

if featureconfig.Get().DisableDynamicCommitteeSubnets {

Figure 2.5: beacon-chain/sync/metrics.go#L83-197.

Exploit Scenario
Eve finds a way to exploit the race in Figures 2.1 through 2.5 to cause data corruption. Eve

carries out the attack on Alice’s machine, causing Alice to suffer data loss.

Recommendation

Short term, protect access to the featureConfig global variable with a RWMutex and have
featureconfig.Get return a copy of the Flags struct rather than a pointer to it. This will
eliminate a data race that could lead to undefined behavior or data corruption.

Long term, regularly run your unit tests with Go's race detector enabled. Doing so can help
reveal similar bugs in the future.

References
e |ntroducing the Go Race Detector
e Data Race Detector

© 2020 Trail of Bits Prysm Assessment | 20

https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/shared/roughtime/roughtime.go#L45-L117
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/sync/service.go#L144-L162
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/shared/runutil/every.go#L15-L31
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/sync/metrics.go#L83-L97
https://golang.org/pkg/sync/#RWMutex
https://blog.golang.org/race-detector
https://golang.org/doc/articles/race_detector.html

3. Context leak in validator client

Severity: Medium Difficulty: Low
Type: Denial of Service Finding ID: TOB-PRYSM-003
Target: validator/client/runner.go

Description

The function Validator.run allocates a Span but does not call End on it along all
control-flow paths. Thus, its associated Context can be leaked. An attacker could exploit
this leak for denial of service.

The allocation appears in Figure 3.1. Code paths that do not call End include those in Figure
3.2and 3.3.

for {
ctx, span := trace.StartSpan(ctx, "validator.processSlot")

select {

Figure 3.1: validator/client/runner. go#L84-185.

if featureconfig.Get().LocalProtection {
if err := v.UpdateProtections(ctx, slot); err != nil {
log.WithError(err).Error("Could not update validator
protection™)
continue

}

Figure 3.2: validator/client/runner.go#L84-185.

allRoles, err := v.RolesAt(ctx, slot)

if err I= nil {
log.WithError(err).Error("Could not get validator roles")
continue

¥

Figure 3.3: validator/client/runner.go#L125-1129.

OpenCensus’s official documentation recommends using the following pattern:

ctx, span := trace.StartSpan(ctx, "cache.Get")
defer span.End()

This pattern is not adhered to in the above code. Based on Slack discussion, choosing not
to adhere to this pattern may have led to other bugs in
beacon-chain/sync/pending_blocks_queue.go, as well.

Exploit Scenario

© 2020 Trail of Bits Prysm Assessment | 21

https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/validator/client/runner.go#L84-L85
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/validator/client/runner.go#L84-L85
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/validator/client/runner.go#L125-L129
https://github.com/census-instrumentation/opencensus-go#spans

Eve discovers a code path that exercises the loop beginning in Figure 3.1 repeatedly. Eve
uses this code path to cause denial-of-service conditions in targeted nodes.

Recommendation

Short term, adjust the loop beginning in Figure 3.1 to use defer span.End(), as the official
OpenCensus documentation suggests. This will eliminate a Context leak that could lead to
denial-of-service conditions. Consider adopting this pattern in
beacon-chain/sync/pending_blocks_queue.go, as well.

Long term, as new code that uses Spans is added to the codebase, ensure that the defer
span.End() pattern is used. This will help prevent denial-of-service conditions.

© 2020 Trail of Bits Prysm Assessment | 22

4. Variable shadowing in beacon-chain history regeneration code

Severity: Medium Difficulty: Undetermined
Type: Undefined Behavior Finding ID: TOB-PRYSM-004
Target: beacon-chain/db/kv/regen_historical_states.go

Description
In two locations in regen_historical states.go, a local variable declaration shadows
another declaration. The affected code appears to at best perform unnecessary work.

The code in question appears in Figures 4.1 and 4.2. In Figure 4.1, the local variable
currentState shadows another variable of the same name. Following the if statement with
condition “lastArchivedSlot > ©,” currentState will refer to a copy of the genesis state.
This appears unintentional. Under certain conditions, that copy of the genesis state could
be passed to regenHistoricalStateProcessSlots, resulting in unnecessary work.

func (kv *Store) regenHistoricalStates(ctx context.Context) error {

genesisState, err := kv.GenesisState(ctx)
if err I= nil {

return err
}
currentState := genesisState.Copy()
startSlot := genesisState.Slot()

lastArchivedSlot, err := kv.LastArchivedSlot(ctx)
if err I= nil {
return err

if lastArchivedSlot > 0 {
archivedIndexStart := lastArchivedSlot - 1

archivedRoot := kv.ArchivedPointRoot(ctx, archivedIndexStart)
currentState, err := kv.State(ctx, archivedRoot)
if err I= nil {

return err

}
startSlot = currentState.Slot()

¥
for slot := lastArchivedSlot; slot <= lastSavedBlockArchivedSlot; slot++ {

targetSlot := startSlot + slotsPerArchivedPoint
filter := filters.NewFilter().SetStartSlot(startSlot +
1).SetEndSlot(targetSlot)
blocks, err := kv.Blocks(ctx, filter)
if err I= nil {
return err

}

// Replay blocks and replay slots if necessary.
if len(blocks) > @ {

}
if targetSlot > currentState.Slot() {

© 2020 Trail of Bits Prysm Assessment | 23

currentState, err = regenHistoricalStateProcessSlots(ctx,
currentState, targetSlot)
if err I= nil {
return errors.Wrap(err, "could not regenerate historical
process slot")

}

Figure 4.1: beacon-chain/db/kv/regen_historical_states.go#L26-1113.

In Figure 4.2, the local variable state shadows a function argument. The local variable is
initialized with a value returned by transition.ProcessSlot. In this case, there does not
appear to be a problem, since transition.ProcessSlot returns either nil or the state
passed to it. Nonetheless, the shadowing should be eliminated so that it does not break if
transition.ProcessSlot's behavior changes.

func regenHistoricalStateProcessSlots(ctx context.Context, state *stateTrie.BeaconState,
slot uint64) (*stateTrie.BeaconState, error) {
ctx, span := trace.StartSpan(ctx, "BeaconDB.regenHistoricalStateProcessSlots")
defer span.End()
if state == nil {
return nil, errors.New("state can't be nil")

if state.Slot() > slot {

err := fmt.Errorf("expected state.slot %d < slot %d", state.Slot(), slot)
return nil, err

¥
if state.Slot() == slot {
return state, nil

}

for state.Slot() < slot {
state, err := transition.ProcessSlot(ctx, state)
if err I= nil {

return nil, errors.Wrap(err, "could not process slot")

}

if transition.CanProcessEpoch(state) {
state, err = transition.ProcessEpochPrecompute(ctx, state)
if err I= nil {
return nil, errors.Wrap(err, "could not process epoch with
optimizations™)

¥

if err := state.SetSlot(state.Slot() + 1); err != nil {
return nil, err

¥

}

return state, nil

Figure 4.2: beacon-chain/db/kv/regen_historical_states.go#L165-L194.

Exploit Scenario
Alice runs a slasher that is unable to identify slashable offenses because its associated
beacon node cannot properly reconstruct the beacon chain’s history.

Recommendation

© 2020 Trail of Bits Prysm Assessment | 24

https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/db/kv/regen_historical_states.go#L26-L113
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/db/kv/regen_historical_states.go#L165-L194

Short term, eliminate the use of variable shadowing in Figures 4.1 and 4.2. This will help
ensure that the code produces correct results, and will improve the code’s readability.

Long term, regularly run Go's shadow tool over your codebase. These bugs are flagged by
shadow, and regularly running shadow could reveal similar ones.

© 2020 Trail of Bits Prysm Assessment | 25

https://yourbasic.org/golang/gotcha-shadowing-variables/

5. Dataracein beacon-chain syncing code

Severity: Informational Difficulty: Not applicable
Type: Timing Finding ID: TOB-PRYSM-005
Target: beacon-chain/sync/service.go, beacon-chain/sync/subscriber.go

Description
The beacon-chain sync.Service sets a flag chainStarted to indicate that no more
subscription requests should be issued. Access to this flag is unsynchronized.

The flag is set in Figure 5.1, and read in Figure 5.2. The race concerning this flag appears to
be innocuous. Nonetheless, eliminating the race by using an atomic data type should add
minimal overhead. Moreover, it would eliminate noise produced by the Go race detector,
potentially allowing legitimate races to be discovered.

func (s *Service) registerHandlers() {

for !s.chainStarted {
select {
case event := <-stateChannel:
if event.Type == statefeed.Initialized {

s.chainStarted = true

Figure 5.1: beacon-chain/sync/service.go#L229-1253.

func (s *Service) subscribeDynamicWithSubnets(
topicFormat string,
validate pubsub.ValidatorEx,
handle subHandler,

) A

go func() {
for {
select {
case <-s.ctx.Done():
ticker.Done()

return
case currentSlot := <-ticker.C():
if s.chainStarted && s.initialSync.Syncing() {
continue

}
}

Figure 5.2: beacon-chain/sync/subscriber.go#L228-1275.

Exploit Scenario
Alice is a Prysm developer tasked with identifying data races. Alice misses a legitimate data
race because it is hidden among innocuous races such as the one in Figures 5.1 and 5.2.

Recommendation

© 2020 Trail of Bits Prysm Assessment | 26

https://golang.org/pkg/sync/atomic/
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/sync/service.go#L229-L253
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/sync/subscriber.go#L228-L275

Short term, adjust the declaration of sync.Service so that chainStarted uses an atomic
data type rather than a bool. This will stop the Go race detector from producing reports
concerning chainStarted, potentially enabling legitimate races to be found.

Long term, regularly run your unit tests with Go's race detector enabled. Doing so can help
reveal similar bugs in the future.

References
e Introducing the Go Race Detector
e Data Race Detector

© 2020 Trail of Bits Prysm Assessment | 27

https://blog.golang.org/race-detector
https://golang.org/doc/articles/race_detector.html

6. Failure to error check could cause undefined behavior

Severity: Low Difficulty: Undetermined
Type: Error Reporting Finding ID: TOB-PRYSM-006
Target: multiple locations

Description

Throughout the codebase, there are multiple locations where a returned error value goes
unchecked before using the (possibly nil) associated result. One such instance of this
(shown in figure 6.1) may cause a validator to fail to acknowledge an error and could cause
cascading undefined behavior. These errors should be checked for a failure state before
using the function results.

UAtts, err = vs.filterAttestationsForBlockInclusion(ctx, latestState, uAtts)
atts = append(atts, uAtts...)

Figure 6.1: beacon-chain/rpc/validator/proposer. go#L692.

Appendix D is the output of filtering ineffassign with the command in figure 6.2. However,
there isn't a particularly good reason to leave ineffectual assignments in test code.

ineffassign ./... | grep -v "test" | sed -E "s;.*src([":]+):([0-9]+):[" 1+ (.*);\3 |
$GITHUB_URL\1#L\2;"

Figure 6.2.

Exploit Scenario
An error in filterAttestationsForBlockInclusion will result in uAtts being nil. Go will
panic attempting to append the explosion of nil on the next line.

Recommendation
In the short term, items in the appendix should be manually checked and fixed. This is
especially important for err values.

Long term, regularly run ineffassign over the codebase as a part of a pre-commit action. All
results should either be explicitly underscored or used.

© 2020 Trail of Bits Prysm Assessment | 28

https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/rpc/validator/proposer.go#L692
https://github.com/gordonklaus/ineffassign
https://github.com/gordonklaus/ineffassign

7. Improvements needed to Bazel end-to-end testing documentation

Severity: Informational Difficulty: Not applicable
Type: Documentation Finding ID: TOB-PRYSM-007
Target: bazel test on Mac 0S Catalina

Description

A difference between Mac OS Catalina and linux caused the error in Figure 7.1 when
running the end-to-end tests using Bazel.This error caused an inability to run the tests
locally on a Mac.

=== RUN TestEndToEnd_Slashing MinimalConfig
TestEndToEnd_Slashing_MinimalConfig: endtoend_test.go:36: Shard index: ©

TestEndToEnd_Slashing_MinimalConfig: endtoend_test.go:37: Starting time: 2020-09-15
18:59:19.377007 +0000 UTC m=+87.985860479

TestEndToEnd_Slashing_MinimalConfig: endtoend_test.go:38: Log Path:
/private/var/tmp/_bazel_johanna/8795d77cc6671d99d49d6319fba8c083/sandbox/darwin-sandbox/267/
execroot/prysm/bazel-out/darwin-fastbuild/testlogs/endtoend/go_default_test/test.outputs

TestEndToEnd_Slashing_MinimalConfig: ethl.go:73: mining log not found, this means the

ethl chain had issues starting: bufio.Scanner: token too long

--- FAIL: TestEndToEnd_Slashing MinimalConfig (2.01s)

Figure 7.1 end-to-end test error message

Recommendation

Short term, document the operating systems that are explicitly supported to run these
tests. This will ensure users set up their own environment that matches a known good
state and don't try to run the tests locally in an unsupported environment.

Long term, include a Dockerfile of install and setup against a base image that can

consistently run the end to end tests independent of operating system or local
dependencies. This instills confidence from the community in the open source project.

© 2020 Trail of Bits Prysm Assessment | 29

8. Raw password logged

Severity: High Difficulty: Medium
Type: Auditing and Logging Finding ID: TOB-PRYSM-008
Target: tools/sendDepositTx/sendDeposits.go

Description
Within the main function of sendDeposits, the rawPassword is loaded from a text file for
use on the keystore and on failure, logs the rawPassword.

// Load from keystore

store := prysmKeyStore.NewKeystore(prysmKeystorePath)

rawPassword := loadTextFromFile(passwordFile)

prefix := params.BeaconConfig().ValidatorPrivkeyFileName

validatorKeys, err = store.GetKeys(prysmKeystorePath, prefix, rawPassword, false /*
warnOnFail */)

if err = nil {

log.WithField("path", prysmKeystorePath).WithField("password",

rawPassword).Errorf("Could not get keys: %v", err)

}

Figure 8.1: sendDepositTx/sendDeposits.go#L179-1186.

Exploit Scenario

Bob is a Prysm user sending a deposit. store.GetKeys fails causing a log containing the
rawPassword from the password textfile to be emitted. Eve has access to the logs and
retrieves Bob’s password.

Recommendation
Short term, remove any logging of passwords to replace it with a failure to access or
similar.

Long term, validate that any engagements with passwords are closely monitored and
restricted. Consider using Vault for management of sensitive information.

© 2020 Trail of Bits Prysm Assessment | 30

https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/tools/sendDepositTx/sendDeposits.go#L179-L186

9. Dependencies are out of date

Severity: Informational
Type: Patching
Target: Various

Description

Difficulty: Undetermined
Finding ID: TOB-PRYSM-009

Updated versions of many of Prysm’s dependencies are available. Since silent bug fixes are
common, the dependencies should be reviewed and updated wherever possible.

Dependencies that can be updated appear in Table 9.1. Assuming semantic versioning is
followed, many of the updates are bug fixes (highlighted).

Dependency

Version currently in use

Latest version available

contrib.go.opencensus.io
/exporter/jaeger

v0.2.0

vo.2.1

github.com/aristanetwork
s/goarista

v0.0.0-20200521140103-
6c3304613b30

v0.0.0-20200812190859-4
cb@e71f3coe

github.com/bazelbuild/bu
ildtools

v0.0.0-20200528175155-
f4e8394f069d

v0.0.0-20200925145723-¢
6efbfedfoeb

github.com/bazelbuild/ru
les_go

v0.23.2

vo.24.3

github.com/btcsuite/btcd

v0.20.1-beta

v0.21.0-beta

github.com/cloudflare/ro
ughtime

v0.0.0-20200205191924-
a69efldab727

v0.0.0-20200911173848-¢
b42b5b8e068

github.com/emicklei/dot

v0.11.0

v0.14.0

github.com/ethereum/go-e

v0.0.0-20200626171358-

v0.0.0-20200922100503-3

thereum a933315235ec 794ded7ca25
github.com/fsnotify/fsno vi.4.7 vl.4.9

tify

github.com/gofrs/flock vo.7.1 v0.8.0

github.com/golang/gddo

v0.0.0-20200528160355-
8d077c1d8f4c

v0.0.0-20200831202555-7
21e228c7686

github.com/golang/mock

vli.4.3

vl.4.4

© 2020 Trail of Bits

Prysm Assessment | 31

https://semver.org/

github.com/golang/snappy v0.0.1 v0.0.2

github.com/google/gofuzz vli.1.0 vl1.2.0

github.com/google/uuid vli.1.1 vli.1.2

github.com/grpc-ecosyste vl.2.0 vl.2.2

m/go-grpc-middleware

github.com/grpc-ecosyste vli.14.6 v1l.15.0

m/grpc-gateway

github.com/herumi/bls-et

v0.0.0-20200722032157 -

v0.0.0-20200923072303-3

h-go-binary 41fc56eba7b4 2b29e5d8cbf
github.com/kr/pretty v0.2.0 vo.2.1
github.com/1ibp2p/go-1ib v0.10.2 v0.11.0
p2p

github.com/libp2p/go-1ib vo.3.1 v0.4.0
p2p-circuit

github.com/1libp2p/go-1lib vo.6.1 vo.7.0
p2p-core

github.com/1libp2p/go-1ib v0.8.3 v0.10.0
p2p-kad-dht

github.com/libp2p/go-1ib vo.3.3 v0.3.5
p2p-pubsub

github.com/1libp2p/go-1lib vo.2.8 vo.3.1
p2p-swarm

github.com/manifoldco/pr vO.7.0 v0.8.0
omptui

github.com/minio/highway v1.0.0 v1i.0.1
hash

github.com/multiformats/ v0.2.2 vo.3.1
go-multiaddr

github.com/multiformats/ vo.1.5 v0.2.0
go-multiaddr-net

github.com/pborman/uuid v1i.2.0 vi.2.1

© 2020 Trail of Bits

Prysm Assessment | 32

github.com/prysmaticlabs

v0.0.0-20200827165051 -

v0.0.0-20200923224139-6

/ethereumapis 58ccb36e36b9 4c46fblbefa
github.com/schollz/progr v3.3.4 v3.5.1
essbar/v3

github.com/sirupsen/logr vl.6.0 vli.7.0
us

github.com/wealdtech/eth v1.3.0 v1l.5.2
2-signer-api

github.com/wealdtech/go- vl.5.0 v1l.6.0
eth2-util

github.com/wealdtech/go- vl.12.0 vl.14.0
eth2-wallet

github.com/wealdtech/go- v2.6.0 v2.7.0
eth2-wallet-types/v2

go.etcd.io/bbolt vli.3.4 vl.3.5

golang.org/x/crypto

v0.0.0-20200728195943-
123391ffbé6de

v0.0.0-20200820211705-5
c72a883971a

golang.org/x/exp

v0.0.0-20200513190911 -
00229845015e

v0.0.0-20200924195034-c
8271d4118b9

golang.org/x/tools

v0.0.0-20200528185414-
6bed40le3f76e

v0.0.0-20200928112810-4
2b621c93869

google.golang.org/genpro

v0.0.0-20200730144737 -

v0.0.0-20200925023002-C

to 007c33dbd381 2d885f95484
google.golang.org/grpc v1.29.1 v1l.32.0

k8s.io/api vO.18.3 v0.19.2
k8s.io/apimachinery vO.18.3 v0.19.2
k8s.io/client-go v0.18.3 v11l.0.0+incompatible

Table 9.1: Dependencies for which updates are available.

Exploit Scenario

Eve learns of a vulnerability in an old version of a Prysm dependency and uses it to exploit

Alice’s Prysm installation.

Recommendation

© 2020 Trail of Bits

Prysm Assessment | 33

Short term, update dependencies to the latest version wherever possible. Verify that all

unit tests pass following such updates. Using out-of-date dependencies could mean critical
bug fixes are missed.

Long term, regularly run go-mod-outdated over the codebase to help ensure that the
project stays up to date with its dependencies.

© 2020 Trail of Bits Prysm Assessment | 34

https://github.com/psampaz/go-mod-outdated

10. Code relies on two dependencies with OSS advisories

Severity: Low Difficulty: High

Type: Patching Finding ID: TOB-PRYSM-010
Target: tools/{bootnode-query/main.go, cluster-pk-manager/server/watchtower.go,
deployContract/deployContract.go}

Description

By depending on etcd@3.3.10, the bootnode-query tool is potentially vulnerable to
CVE-2018-17142, CVE-2018-17143, CVE-2018-17846, CVE-2018-17847, and CVE-2018-17848.
By depending on golang.org/x/net v0.0.0-20170114055629-12499483f923, the
cluster-pk-manager and deployContract tools are potentially vulnerable to
CVE-2020-15114, CVE-2020-15115, and CVE-2020-15136.

The dependency chain leading to etcd@3.3.10 appears in Figure 10.1. The dependency
chain leading to golang.org/x/net v0.0.0-20170114055629-12499483f923 appears in
Figure 10.2.

github.com/coreos/etcd@v3.3.10+incompatible
github.com/spfl3/viper@vl.3.2
github.com/spfl3/cobra@ve.0.5
github.com/dgraph-io/badger@vl.6.1
github.com/ipfs/go-ds-badger@ve.2.3
github.com/1libp2p/go-1libp2p-peerstore@vo.2.6
github.com/1libp2p/go-1libp2p-kad-dht@ve.8.3

Figure 10.1: Dependency chain leading to etcd@3.3.160.

golang.org/x/net@ve.0.0-20170114055629-124994831923
k8s.io/kube-openapi@ve.0.0-20200410145947-61e@4a5be9ab
k8s.io/apimachinery@ve.18.3

Figure 10.2: Dependency chain leading to golang.org/x/net
v0.0.0-20170114055629-124994831923.

We've given this finding low severity since it affects only Prysm'’s “tools,” and not its core
components (i.e., the beacon node, validator, or slasher).

Exploit Scenario

Alice, a Prysm developer, regularly uses Prsym tools. Eve uses vulnerabilities in those tools
to exploit Alice’'s machine.

Recommendation

Short term, upgrade to the most recent versions of 1ibp2p/go-1ibp2p-kad-dht (ve.10.0)
and k8s.io/apimachinery (v11.0.0). Doing so will eliminate reliance on vulnerable code.

Long term, regularly run nancy over the codebase to reveal vulnerable dependencies.

© 2020 Trail of Bits Prysm Assessment | 35

https://ossindex.sonatype.org/vuln/b178ee7d-070f-49c6-9154-adbd6423d844?component-type=golang&component-name=golang.org%2Fx%2Fnet&utm_source=nancy-client&utm_medium=integration&utm_content=1.0.0
https://ossindex.sonatype.org/vuln/17c71107-b15c-4a27-a016-852755215b81?component-type=golang&component-name=golang.org%2Fx%2Fnet&utm_source=nancy-client&utm_medium=integration&utm_content=1.0.0
https://ossindex.sonatype.org/vuln/b892d39f-c62f-449f-acee-00b2e3c0d595?component-type=golang&component-name=golang.org%2Fx%2Fnet&utm_source=nancy-client&utm_medium=integration&utm_content=1.0.0
https://ossindex.sonatype.org/vuln/5e14fa1d-6146-4875-8465-dadf0cf71947?component-type=golang&component-name=golang.org%2Fx%2Fnet&utm_source=nancy-client&utm_medium=integration&utm_content=1.0.0
https://ossindex.sonatype.org/vuln/39d4546b-baa5-48ec-8c93-8e425470ba5e?component-type=golang&component-name=golang.org%2Fx%2Fnet&utm_source=nancy-client&utm_medium=integration&utm_content=1.0.0
https://ossindex.sonatype.org/vuln/bba60acb-c7b5-4621-af69-f4085a8301d0?component-type=golang&component-name=github.com%2Fcoreos%2Fetcd&utm_source=nancy-client&utm_medium=integration&utm_content=1.0.0
https://ossindex.sonatype.org/vuln/5def94e5-b89c-4a94-b9c6-ae0e120784c2?component-type=golang&component-name=github.com%2Fcoreos%2Fetcd&utm_source=nancy-client&utm_medium=integration&utm_content=1.0.0
https://ossindex.sonatype.org/vuln/d373dc3f-aa88-483b-b501-20fe5382cc80?component-type=golang&component-name=github.com%2Fcoreos%2Fetcd&utm_source=nancy-client&utm_medium=integration&utm_content=1.0.0
https://github.com/sonatype-nexus-community/nancy

11. Overwrite of powchain.Service.preGenesisState even when
deposits cannot be processed

Severity: Medium Difficulty: High
Type: Denial of Service Finding ID: TOB-PRYSM-011
Target: beacon-chain/powchain/deposit.go

Description
If an error occurs processing Eth 1.0 deposits, the powchain service's preGenesisState
field may be overwritten with nil, throwing away previous work.

The relevant code appears in Figure 11.1 and 11.2. Note that following the call to
ProcessPreGenesisDeposits, s.preGenesisState is set even if err is not nil. Further
note that there are several paths through ProcessPreGenesisDeposits where nil is
returned in conjunction with an error.

func (s *Service) processDeposit(ethlData *ethpb.EthlData, deposit *ethpb.Deposit) error {
var err error
if err := s.preGenesisState.SetEthlData(ethlData); err != nil {
return err
}

s.preGenesisState, err = blocks.ProcessPreGenesisDeposits(context.Background(),
s.preGenesisState, []*ethpb.Deposit{deposit})

return err
}

Figure 11.1: beacon-chain/powchain/deposit.go#L10-117.

func ProcessPreGenesisDeposits(
ctx context.Context,
beaconState *stateTrie.BeaconState,
deposits []*ethpb.Deposit,
) (*stateTrie.BeaconState, error) {
var err error
beaconState, err = ProcessDeposits(ctx, beaconState, ðpb.SignedBeaconBlock{
Block: ðpb.BeaconBlock{Body: ðpb.BeaconBlockBody{Deposits: deposits}}})
if err I= nil {
return nil, errors.Wrap(err, "could not process deposit")
}
for _, deposit := range deposits {
pubkey := deposit.Data.PublicKey
index, ok := beaconState.ValidatorIndexByPubkey(bytesutil.ToBytes48(pubkey))
if lok {
return beaconState, nil

}
balance, err := beaconState.BalanceAtIndex(index)
if err I= nil {
return nil, err
}
validator, err := beaconState.ValidatorAtIndex(index)
if err I= nil {
return nil, err
}

© 2020 Trail of Bits Prysm Assessment | 36

https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/powchain/deposit.go#L10-L17

validator.EffectiveBalance =
mathutil.Min(balance-balance%params.BeaconConfig().EffectiveBalanceIncrement,
params.BeaconConfig().MaxEffectiveBalance)
if validator.EffectiveBalance ==
params.BeaconConfig().MaxEffectiveBalance {
validator.ActivationEligibilityEpoch = ©
validator.ActivationEpoch = @

}

if err := beaconState.UpdateValidatorAtIndex(index, validator); err != nil {
return nil, err

}

}

return beaconState, nil

Figure 11.2: beacon-chain/core/blocks/deposit.go#L22-158.

Exploit Scenario

Eve sends traffic to exercise one of the highlighted paths in Figure 11.2 just prior to the
launch of Eth 2.0. This puts Prysm nodes into an invalid state, making them unable to
participate in the launch.

Recommendation
Short term, store the result of the call to ProcessPreGenesisDeposits in a local variable,

and use it to set s.preGenesisState only if err is not nil. This will prevent previous work
reflected in s.preGenesisState from being thrown away.

Long term, whenever an error could be returned, avoid assigning to a field before first
checking for an error. Such practice could result in unintentional state modifications.

© 2020 Trail of Bits Prysm Assessment | 37

https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/core/blocks/deposit.go#L22-L58

12. Excessive memory usage by snappy .Decode

Severity: Informational Difficulty: High
Type: Denial of Service Finding ID: TOB-PRYSM-012
Target: beacon-chain/db/kv/encoding.go

Description

Prysm beacon nodes limit the maximum size of data they will snappy.Decode when the
data is received via gossip (Figure 12.1). However, they do not exercise the same
precautions in regard to data read from the key-value store (Figure 12.2). Exercising such
precautions would provide defense in depth.

func (e SszNetworkEncoder) DecodeGossip(b []byte, to interface{}) error {
size, err := snappy.DecodedLen(b)
if uint64(size) > MaxGossipSize {
return errors.Errorf("gossip message exceeds max gossip size: %d bytes > %d
bytes", size, MaxGossipSize)

}
b, err = snappy.Decode(nil /*dst*/, b)
if err I= nil {
return err
}

return e.doDecode(b, to)

Figure 12.1: beacon-chain/p2p/encoder/ssz.go#L89-199.

func decode(ctx context.Context, data []byte, dst proto.Message) error {
ctx, span := trace.StartSpan(ctx, "BeaconDB.decode")
defer span.End()

data, err := snappy.Decode(nil, data)
if err I= nil {
return err
}
if isSSzZStorageFormat(dst) {
return dst.(fastssz.Unmarshaler).UnmarshalSSZ(data)
}

return proto.Unmarshal(data, dst)

Figure 12.2: beacon-chain/db/kv/encoding.go#L16-128.

Exploit Scenario

Eve finds a way to store data of her choosing in a beacon node’s key-value store. Eve writes
a malicious payload to the store of Alice’s node. When the node tries to decode the
payload, it exhausts its memory and crashes.

Recommendation

Short term, consider adding a call to snappy.DecodedLen in kv.decode, similar to the one
in ssz.SszNetworkEncoder.DecodeGossip. This will provide defense in depth should an
attacker find a way to write data into a beacon node’s key-value store.

© 2020 Trail of Bits Prysm Assessment | 38

https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/p2p/encoder/ssz.go#L89-L99
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/db/kv/encoding.go#L16-L28

Long term, protect calls related to serialization/deserialization with additional error checks.
Such functions are a common source of vulnerabilities and deserve elevated scrutiny.

© 2020 Trail of Bits Prysm Assessment | 39

13. Improper use of recoverin hashutil.HashProto

Severity: Informational Difficulty: Not applicable
Type: Error Reporting Finding ID: TOB-PRYSM-013
Target: shared/hashutil/hash.go

Description

The code and comments in hashutil.HashProto suggest the only way a panic can occur is
through a nil-pointer dereference (Figures 13.1 and 13.2). This assumption appears
invalid, since many other error types seem just as plausible.

var ErrNilProto = errors.New("cannot hash a nil protobuf message")

Figure 13.1: shared/hashutil/hash.go#L20.

func HashProto(msg proto.Message) (result [32]byte, err error) {
// Hashing a proto with nil pointers will cause a panic in the unsafe
// proto.Marshal library.
defer func() {
if r := recover(); r != nil {
err = ErrNilProto

}

30

Figure 13.2: shared/hashutil/hash.go#L106-1113.

It appears that the use of recover in Figure 73.2 may have been added to deal with panics
caused by TestHashProtoFuzz. Putting that use of recover directly in TestHashProtoFuzz
would reduce its likelihood of unintentionally suppressing errors.

func TestHashProtoFuzz(t *testing.T) {
f := fuzz.New().NilChance(.2)

for i := 0; i < 1000; i++ {
msg := &pb.AddressBook{}
f.Fuzz(msg)
_, err := hashutil.HashProto(msg)
_ =err

Figure 13.2: shared/hashutil/hash_test.go#L72-181.

Exploit Scenario

Eve discovers a bug in hashutil.HashProto, and attempts to exploit it in Alice’s Prysm
installation. Such attempts can fail, so Eve tries repeatedly, relying on the fact that the
hashutil.HashProto incorrectly reports her attempts as nil-pointer dereferences.

Recommendation

© 2020 Trail of Bits Prysm Assessment | 40

https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/shared/hashutil/hash.go#L20
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/shared/hashutil/hash.go#L106-L113
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/shared/hashutil/hash_test.go#L72-L81

Short term, move the use of recover from hashutil.HashProto to TestHashProtoFuzz.
Verify that the error is a nil-pointer dereference. These steps will help ensure that this
particular use of recover does not unintentionally suppress errors.

Long term, regularly run your unit tests with all uses of recover disabled. Verify that all

panics that would have been recovered are expected. These steps will help ensure that
Prysm’s uses of recover, generally, do not unintentionally suppress errors.

© 2020 Trail of Bits Prysm Assessment | 41

14. Improper use of recover in powchain.Service

Severity: Low Difficulty: Undetermined
Type: Error Reporting Finding ID: TOB-PRYSM-014
Target: beacon-chain/powchain/service.go, beacon-chain/powchain/service_test.go

Description

The powchain service uses recover to handle panics that could occur in
Service.handleETH1FollowDistance. This use of recover is hiding a nil-pointer
dereference that currently exists in the TestLatestMainchainInfo_OK test.

Go-ethereum'’s core.BlockChain.GetHeaderByNumber method does not return an error,
but merely returns nil under abnormal conditions. This can cause the
goodFetcher.HeaderByNumber to return nil, nil (Figures 14.1 through 14.3).

func (g *goodFetcher) HeaderByNumber(ctx context.Context, number *big.Int)
(*gethTypes.Header, error) {
if g.backend == nil {
return &gethTypes.Header{
Number: big.NewInt(15),

Time: 150,
}, nil
}
if number == nil {
return g.backend.Blockchain().CurrentHeader(), nil
}

return g.backend.Blockchain().GetHeaderByNumber(number.Uint64()), nil

Figure 14.1: beacon-chain/powchain/service_test.go#L90-1L101.

// GetHeaderByNumber retrieves a block header from the database by number,

// caching it (associated with its hash) if found.

func (bc *BlockChain) GetHeaderByNumber(number uint64) *types.Header {
return bc.hc.GetHeaderByNumber (number)

}

Figure 14.2: go-ethereum/core/blockchain.go#L2426-124360.

// GetHeaderByNumber retrieves a block header from the database by number,
// caching it (associated with its hash) if found.
func (hc *HeaderChain) GetHeaderByNumber(number uint64) *types.Header {

hash := rawdb.ReadCanonicalHash(hc.chainDb, number)
if hash == (common.Hash{}) {

return nil
¥

return hc.GetHeader(hash, number)

Figure 14.3: go-ethereum/core/headerchain.go#L461-1469.

Areturn of nil, nil from goodFetcher.HeaderByNumber causes a nil-pointer
dereference in the TestLatestMainchainInfo_OK test (Figures 14.4 through 14.6). The nil

© 2020 Trail of Bits Prysm Assessment | 42

https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/powchain/service_test.go#L90-L101
https://github.com/ethereum/go-ethereum/blob/c9959145a9c1f1141784a2e7e0b2cb070d399065/core/blockchain.go#L2426-L2430
https://github.com/ethereum/go-ethereum/blob/c9959145a9c1f1141784a2e7e0b2cb070d399065/core/headerchain.go#L461-L469

header is passed to s.headerCache.AddHeader. The nil-pointer dereference results when
s.headerCache.AddHeader tries to fetch header’s Number field.

header, err := s.ethlDataFetcher.HeaderByNumber(ctx, height)
if err I= nil {
return [32]byte{}, errors.Wrap(err, fmt.Sprintf("could not query header with
height %d", height.uint64()))

if err := s.headerCache.AddHeader(header); err != nil {

Figure 14.4: beacon-chain/powchain/block_reader.go#L51-L55.

func (b *headerCache) AddHeader(hdr *gethTypes.Header) error {
b.lock.Lock()
defer b.lock.Unlock()

hInfo := headerToHeaderInfo(hdr)

Figure 14.5: beacon-chain/powchain/block_cache.go#L150-1154.

func headerToHeaderInfo(hdr *gethTypes.Header) *headerInfo {
return &headerInfo{
Hash: hdr.Hash(),
Number: new(big.Int).Set(hdr.Number),
Time: hdr.Time,

Figure 14.6: beacon-chain/powchain/block_cache.go#L48-154.

Finally, the nil-pointer dereference is suppressed by the use of safelyHandlePanic ()
inside powchain.Service.handleETH1FollowDistance (Figures 14.7 through 14.10).

func TestLatestMainchainInfo OK(t *testing.T) {

go func() {
web3Service.run(web3Service.ctx.Done())

Figure 14.7: beacon-chain/powchain/block_reader_test.go#L29-L52.

func (s *Service) run(done <-chan struct{}) {
for {
select {

case <-s.headTicker.C:

s.handleETH1FollowDistance()

Figure 14.8: beacon-chain/powchain/service.go#L679-1L701.

func (s *Service) handleETH1FollowDistance() {
defer safelyHandlePanic()

Figure 14.9: beacon-chain/powchain/service.go#L608-L609.

© 2020 Trail of Bits Prysm Assessment | 43

https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/powchain/block_reader.go#L51-L55
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/powchain/block_cache.go#L150-L154
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/powchain/block_cache.go#L48-L54
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/powchain/block_reader_test.go#L29-L52
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/powchain/service.go#L679-L701
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/powchain/service.go#L608-L609

// safelyHandleHeader will recover and log any panic that occurs from the
// block
func safelyHandlePanic() {

if r := recover(); r != nil {
log.WithFields(logrus.Fields{
"r'":r,

}) .Error("Panicked when handling data from ETH 1.0 Chain! Recovering...")

debug.PrintStack()

Figure 14.10: beacon-chain/powchain/service.go#L596-L606.

Exploit Scenario
The powchain service is unable to fetch data it requires. The error goes unnoticed because
it is suppressed by safelyHandlePanic. The powchain service continues in an invalid state.

Recommendation

Short term, adjust the implementation of goodFetcher.HeaderByNumber so that it returns
an error when g.backend.Blockchain().CurrentHeader() is nil. This will eliminate a
nil-pointer dereference that currently exists in the TestLatestMainchainInfo_OK test.

Long term, regularly run your unit tests with all uses of recover disabled. Verify that all
panics that would have been recovered are expected. These steps will help ensure that
Prysm’s uses of recover, generally, do not unintentionally suppress errors.

© 2020 Trail of Bits Prysm Assessment | 44

https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/powchain/service.go#L596-L606

15. Premature loop exit causes validator deposits to be missed

Severity: Medium Difficulty: High
Type: Data Validation Finding ID: TOB-PRYSM-015
Target: beacon-chain/core/blocks/deposit.go

Description

The ProcessPreGenesisDeposits processes Eth 1.0 deposits in preparation for the Eth 2.0
mainnet launch. If a depositor’s public key cannot be processed, then the function returns
the result of processing all deposits up to that point. Thus, deposits after that point are lost.

The code in question appears in Figure 15.1. The function loops over a sequence of
deposits. Work performed by the function is accumulated in a beaconState variable. If the
function ValidatorIndexByPubkey returns an error (e.g., because the depositor’s public
key could not be found), then beaconState is returned as is. Deposits that would have
been processed after that point are dropped.

func ProcessPreGenesisDeposits(
ctx context.Context,
beaconState *stateTrie.BeaconState,
deposits []*ethpb.Deposit,
) (*stateTrie.BeaconState, error) {
var err error
beaconState, err = ProcessDeposits(ctx, beaconState, ðpb.SignedBeaconBlock{
Block: ðpb.BeaconBlock{Body: ðpb.BeaconBlockBody{Deposits: deposits}}})
if err I= nil {
return nil, errors.Wrap(err, "could not process deposit")
}
for _, deposit := range deposits {
pubkey := deposit.Data.PublicKey
index, ok := beaconState.ValidatorIndexByPubkey(bytesutil.ToBytes48(pubkey))
if lok {
return beaconState, nil

}
balance, err := beaconState.BalanceAtIndex(index)
if err I= nil {
return nil, err
}
validator, err := beaconState.ValidatorAtIndex(index)
if err I= nil {
return nil, err
}

validator.EffectiveBalance =
mathutil.Min(balance-balance%params.BeaconConfig().EffectiveBalanceIncrement,
params.BeaconConfig().MaxEffectiveBalance)
if validator.EffectiveBalance ==
params.BeaconConfig().MaxEffectiveBalance {
validator.ActivationEligibilityEpoch = ©
validator.ActivationEpoch = @

¥

if err := beaconState.UpdateValidatorAtIndex(index, validator); err != nil {
return nil, err

¥

© 2020 Trail of Bits Prysm Assessment | 45

return beaconState, nil

Figure 15.1: beacon-chain/core/blocks/deposit.go#L22-158.

Exploit Scenario
Alice submits an Eth 1.0 deposit in order to become a validator. Eve arranges for her bogus
public key to be processed before Alice's deposit. Alice’s deposit is ignored.

Recommendation

Short term, if a depositor’s public key cannot be processed, skip over it and continue
processing the remaining deposits. This will eliminate a bug that currently allows valid
deposits to be ignored.

Long term, be wary of returning from inside of a loop on an error condition. Such a practice
is a frequent source of errors.

© 2020 Trail of Bits Prysm Assessment | 46

https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/core/blocks/deposit.go#L22-L58

16. Proposer indices cannot be retrieved from cache

Severity: Medium Difficulty: Low
Type: Data Validation Finding ID: TOB-PRYSM-016
Target: beacon-chain/cache/committee.go, beacon-chain/cache/committee_test.go

Description

Committees structs are cached using their Seed field as a key (Figure 16.1). Proposer indices
are inserted into the cache in Committees structs with the Seed field unset. As such, they
are unretrievable.

// Committees defines the shuffled committees seed.
type Committees struct {

CommitteeCount uint64

Seed [32]byte

ShuffledIndices [Juint64

SortedIndices [Juinte4

ProposerIndices []Juint64

Figure 16.1: beacon-chain/cache/committee.go#L35-142.

Figure 16.2 shows what happens when a set of a proposer indices cannot be found in the
cache. A new Committees struct is created to contain the proposer indices, but its Seed field
is not set.

// AddProposerIndiceslList updates the committee shuffled list with proposer indices.
func (c *CommitteeCache) AddProposerIndiceslList(seed [32]byte, indices [Juint64) error {
c.lock.Lock()
defer c.lock.Unlock()

obj, exists, err := c.CommitteeCache.GetByKey(key(seed))
if err I= nil {
return err

if lexists {
committees := &Committees{ProposerIndices: indices}
if err := c.CommitteeCache.Add(committees); err != nil {
return err
}

Figure 16.2: beacon-chain/cache/committee.go#L118-1131.

There is a unit test for AddProposerIndiceslList, but it contains an error. The indices local
variable is overwritten with nil while verifying that those indices are not already in the
cache. Consequently, nil is inserted into the cache. Later, nil is retrieved from the cache
(as a result of this bug) and stored in the received local variable. The local variables
received and indices are compared and they match (they are both nil), and the test
passes.

func TestCommitteeCache_AddProposerIndicesList(t *testing.T) {

© 2020 Trail of Bits Prysm Assessment | 47

https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/cache/committee.go#L35-L42
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/cache/committee.go#L118-L131

cache := NewCommitteesCache()

seed := [32]byte{'A'}
indices := [Juinte4{1, 2, 3, 4, 5}
indices, err := cache.ProposerIndices(seed)
require.NoError(t, err)
if indices != nil {
t.Error("Expected committee count not to exist in empty cache")

}

require.NoError(t, cache.AddProposerIndicesList(seed, indices))

received, err := cache.ProposerIndices(seed)
require.NoError(t, err)
assert.DeepEqual(t, received, indices)

Figure 16.3: beacon-chain/cache/committee_test.go#L90-1104.

Exploit Scenario

Alice runs a Prysm node. Alice’s node wastes work maintaining a cache unnecessarily. This
combined with other factors makes her node unable to keep up with the network. Alice’s
node is slashed as a result.

Recommendation
Short term, set a Committees struct's Seed when inserting proposer indices into the cache.
This will eliminate a bug that currently makes the struct unretrievable.

Long term, regularly run Go's shadow tool over your codebase. This bug is due, in part, to

variable shadowing in a unit test. Regularly running Go’s shadow can help to reveal such
problems.

© 2020 Trail of Bits Prysm Assessment | 48

https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/cache/committee_test.go#L90-L104
https://yourbasic.org/golang/gotcha-shadowing-variables/

17. Shuffled list is not added to cache if proposer indices are present

Severity: Informational Difficulty: Undetermined
Type: Data Validation Finding ID: TOB-PRYSM-017
Target: beacon-chain/cache/committee.go, beacon-chain/core/helpers/committee.go

Description

Attempting to insert a shuffled list into the cache after a set of proposer indices with the
same seed fails. This wastes work and is inconsistent with how proposer indices are
inserted into the cache.

The relevant code appears in Figure 17.1 and 17.2. UpdateCommitteeCache is called to add
a shuffled list to the cache. It builds a Committees struct and calls
AddCommitteeShuffledList to add it to the cache. AddCommitteeShuffledList does so
using AddIfNotPresent. Thus, if a Committees struct was already present with the same
seed, say because proposer indices with that seed were already inserted, then the shuffled
list would not be inserted.

// UpdateCommitteeCache gets called at the beginning of every epoch to cache the committee
shuffled indices
// list with committee index and epoch number. It caches the shuffled indices for current
epoch and next epoch.
func UpdateCommitteeCache(state *stateTrie.BeaconState, epoch uint64) error {

for _, e := range [Juint64{epoch, epoch + 1} {

if err := committeeCache.AddCommitteeShuffledList(&cache.Committees{
ShuffledIndices: shuffledIndices,
CommitteeCount: count * params.BeaconConfig().SlotsPerEpoch,
Seed: seed,
SortedIndices: sortedIndices,

}); err 1= nil {
return err

}

Figure 17.1: beacon-chain/core/helpers/committee.go#L307-1342.

// AddCommitteeShuffledList adds Committee shuffled list object to the cache. T
// his method also trims the least recently list if the cache size has ready the max cache
size limit.
func (¢ *CommitteeCache) AddCommitteeShuffledList(committees *Committees) error {
c.lock.Lock()
defer c.lock.Unlock()

if err := c.CommitteeCache.AddIfNotPresent(committees); err != nil {
return err
}

trim(c.CommitteeCache, maxCommitteesCacheSize)
return nil

Figure 17.2: beacon-chain/cache/committee.go#L105-1L116.

© 2020 Trail of Bits Prysm Assessment | 49

https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/core/helpers/committee.go#L307-L342
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/cache/committee.go#L105-L116

This behavior is inconsistent with how proposer indices are inserted into the cache (Figures
17.3 and 17.4). UpdateProposerIndicesInCache is called to insert proposer indices into the
cache. UpdateProposerIndicesInCache, in turn, calls AddProposerIndicesList. Ifa
Committees struct with the relevant seed already exists in the cache, then the proposer
indices are added to that struct.

// UpdateProposerIndicesInCache updates proposer indices entry of the committee cache.
func UpdateProposerIndicesInCache(state *stateTrie.BeaconState, epoch uint64) error {

if err := committeeCache.AddProposerIndiceslList(seed, proposerIndices); err != nil {
return err
}

Figure 17.3: beacon-chain/core/helpers/committee.go#L348-1365.

// AddProposerIndiceslList updates the committee shuffled list with proposer indices.
func (c *CommitteeCache) AddProposerIndiceslList(seed [32]byte, indices [Juint64) error {
c.lock.Lock()
defer c.lock.Unlock()

obj, exists, err := c.CommitteeCache.GetByKey(key(seed))
if err I= nil {
return err

if lexists {
committees := &Committees{ProposerIndices: indices}
if err := c.CommitteeCache.Add(committees); err != nil {
return err
}

} else {

committees, ok := obj.(*Committees)

if lok {
return ErrNotCommittee

}

committees.ProposerIndices = indices

if err := c.CommitteeCache.Add(committees); err != nil {
return err

}

Figure 17.4: beacon-chain/cache/committee.go#L118-1141.

Currently, this finding does not pose a problem, because proposer indices are inserted into
the cache without an associated seed (TOB-PRYSM-016). However, if that bug is fixed in the
obvious way, then this bug will become an issue. This can be verified with a minor
modification of the test in Figure 16.3.

Exploit Scenario
Alice runs a Prysm node with a patch for TOB-PRYSM-016. Alice’s node wastes work
computing shuffled lists that it does not insert into the cache. This combined with other

factors makes her node unable to keep up with the network. Alice’s node is slashed as a
result.

Recommendation

© 2020 Trail of Bits Prysm Assessment | 50

https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/core/helpers/committee.go#L348-L365
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/cache/committee.go#L118-L141

Short term, when inserting a shuffled list into the cache, add it to an existing Committees
struct if one already exists with the relevant seed. This will eliminate a bug that currently
causes a node to build Committees structs unncessarily.

Long term, consider ways that the cache code may be consolidated. This bug is, in part, the
result of a discrepancy in how the cache handled proposer indices vs. shuffled indices.
Consolidating that code might have prevented this bug. Furthermore, you may want to
include other types of data in the cache in the future. Consolidating the cache code could
help to facilitate such extensions.

© 2020 Trail of Bits Prysm Assessment | 51

18. Inefficiencies surrounding use of cache

Severity: Informational Difficulty: Not applicable
Type: Data Validation Finding ID: TOB-PRYSM-018
Target: beacon-chain/core/helpers/validators.go

Description
Work is unnecessarily duplicated when inserting items into the cache.

Consider how proposer indices are inserted into the cache (Figures 18.1 through 18.3). The
active valid indices are computed for the given epoch. Then, the function
UpdateProposerIndicesInCache is called without the results of the just mentioned
computation. UpdateProposerIndicesInCache recomputes the ActiveValidatorIndices
and calls precomputeProposerIndices, which computes the proposer indices for all slots
within the epoch. Eventually, control returns to BeaconProposerIndex, which recomputes
the proposer index for the slot of interest. Thus, work done to compute the active validator
indices and the proposer index for one slot is duplicated.

func BeaconProposerIndex(state *stateTrie.BeaconState) (uint64, error) {

proposerIndices, err := committeeCache.ProposerIndices(seed)

if err I= nil {
return @, errors.Wrap(err, "could not interface with committee cache")
b
if proposerIndices != nil {
return proposerIndices[state.Slot()%params.BeaconConfig().SlotsPerEpoch], nil
¥
indices, err := ActiveValidatorIndices(state, e)
if err I= nil {
return @, errors.Wrap(err, "could not get active indices")
b
if err := UpdateProposerIndicesInCache(state, e); err != nil {
return @, errors.Wrap(err, "could not update committee cache")
b

return ComputeProposerIndex(state, indices, seedWithSlotHash)

Figure 18.1: beacon-chain/core/helpers/validators.go#L176-L209.

func UpdateProposerIndicesInCache(state *stateTrie.BeaconState, epoch uint64) error {

indices, err := ActiveValidatorIndices(state, epoch)
if err I= nil {
return nil
3
proposerIndices, err := precomputeProposerIndices(state, indices)
if err I= nil {

return err

}

Figure 18.2: beacon-chain/core/helpers/committee.go#L349-1357.

© 2020 Trail of Bits Prysm Assessment | 52

https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/core/helpers/validators.go#L176-L209
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/core/helpers/committee.go#L349-L357

func precomputeProposerIndices(state *stateTrie.BeaconState, activelIndices []uint64)
([Juinte4, error) {

for i := uint64(@); i < params.BeaconConfig().SlotsPerEpoch; i++ {
seedWithSlot := append(seed[:], bytesutil.Bytes8(slot+i)...)
seedWithSlotHash := hashFunc(seedWithSlot)
index, err := ComputeProposerIndex(state, activeIndices, seedWithSlotHash)
if err = nil {
return nil, err

}

proposerIndices[i] = index

Figure 18.3: beacon-chain/core/helpers/committee.go#L377-1398.

A similar comment applies to ActiveValidatorIndices and UpdateCommitteeCache.

Recommendation

Short term, refactor BeaconProposerIndex, UpdateProposerIndicesInCache, and
precomputeProposerIndices so that the work done to compute the active validator indices
and the proposer index for one slot is not duplicated. Be careful to avoid introducing data
races involving the presence of data in the cache in the process. These steps will improve
the overall efficiency of the cache.

Long term, as new types of data are added to the cache, avoid duplicating computations
across functions that update the cache and their callers. This will help maintain the cache’s
effectiveness.

© 2020 Trail of Bits Prysm Assessment | 53

https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/core/helpers/committee.go#L377-L398

19. Wrongdomain usedin helpers.SlotSignature

Severity: Medium Difficulty: Low
Type: Cryptography Finding ID: TOB-PRYSM-019
Target: beacon-chain/core/helpers/attestation.go

Description

The current Eth 2.0 specification says that selection proofs should be signed using
DOMAIN_SELECTION_PROOF. Prysm deviates from the specification by using
DOMAIN_BEACON_ATTESTER (Figure 19.1).

// SlotSignature returns the signed signature of the hash tree root of input slot.
//
// Spec pseudocode definition:
// def get_slot signature(state: BeaconState, slot: Slot, privkey: int) -> BLSSignature:
// domain = get_domain(state, DOMAIN_SELECTION_PROOF, compute_epoch_at_slot(slot))
// signing_root = compute_signing_root(slot, domain)
// return bls.Sign(privkey, signing_root)
func SlotSignature(state *stateTrie.BeaconState, slot uint64, privKey bls.SecretKey)
(bls.Signature, error) {

d, err := Domain(state.Fork(), CurrentEpoch(state),
params.BeaconConfig().DomainBeaconAttester, state.GenesisValidatorRoot())

Figure 19.1: beacon-chain/core/helpers/attestation.go#L16-L24.

This discrepancy appears to be the result of an incomplete fix in pull request 5604.

Exploit Scenario
Alice runs a Prysm node. Her node is selected for aggregation. Her node produces a
selection proof with an invalid signature and is slashed.

Recommendation

Short term, adjust SlotSignature so that it uses DOMAIN_SELECTION_PROOF for selection
proofs, rather than DOMAIN_BEACON_ATTESTER. This will bring the code in-line with the Eth
2.0 current specification.

Long term, when reviewing PRs, consider not only the code in the PR, but other code to
which similar changes should be applied. This issue appears to be the result of an
incomplete fix. A more expansive approach to PR review could help to prevent similar
situations.

© 2020 Trail of Bits Prysm Assessment | 54

https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/core/helpers/attestation.go#L16-L24
https://github.com/prysmaticlabs/prysm/pull/5604

20. Wrong loop exit conditionin store.ForkChoice.AncestorRoot

Severity: Medium Difficulty: Low
Type: Denial of Service Finding ID: TOB-PRYSM-020
Target: beacon-chain/forkchoice/protoarray/store.go

Description

The AncestorRoot function iterates through nodes until it finds one with a slot less than a
slot of interest. The loop does not account for the possibility that it could run out of nodes
to check.

The definition of AncestorRoot appears in Figure 20.1. Nearby code suggests that
f.store.nodes[i].parent could take the value NonExistentNode, which is defined as
~uint64(0). If the loop variable i were to take this value, an “index out of range” error
would result. Thus, the the loop condition should be something like:

i < uint64(len(f.store.nodes)) & & f.store.nodes[i].slot > slot

// AncestorRoot returns the ancestor root of input block root at a given slot.
func (f *ForkChoice) AncestorRoot(ctx context.Context, root [32]byte, slot uint64) ([]byte,
error) {
i, ok := f.store.nodesIndices[root]
if lok {
return nil, errors.New("node does not exist")

}
if i >= uint64(len(f.store.nodes)) {

return nil, errors.New("node index out of range")
}

for f.store.nodes[i].slot > slot {
if ctx.Err() != nil {
return nil, ctx.Err()

}

i = f.store.nodes[i].parent

}
if i >= uint64(len(f.store.nodes)) {

return nil, errors.New("node index out of range")
}

return f.store.nodes[i].root[:], nil

Figure 20.1: beacon-chain/forkchoice/protoarray/store.go#L156-1178.

Exploit Scenario
Eve finds a way to call AncestorRoot with an exceedingly small slot value, thereby causing
an “index out of range” error. Eve uses the bug to crash Prysm nodes.

Recommendation

© 2020 Trail of Bits Prysm Assessment | 55

https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/forkchoice/protoarray/store.go#L156-L178

Short term, adjust the AncestorRoot’s for loop condition so that it accounts for i not within
the range of f.store.nodes’s indices. This will eliminate potential “index out of range”
errors that could be used for denial of service.

Long term, consider developing a fuzzer for AncestorRoot or one of its predecessors in the
call graph. Fuzzing might have caught this bug, and could catch similar bugs in the future.

© 2020 Trail of Bits Prysm Assessment | 56

21. Handleron_tick unimplemented

Severity: Undetermined Difficulty: Undetermined

Type: Undefined Behavior Finding ID: TOB-PRYSM-021
Target: beacon node

Description
The Eth 2.0 specification dictates that on_time (Figure 21.1) be called “whenever time >

store.time where time is the current Unix time.” on_tick does not appear to be
implemented in Prysm.

def on_tick(store: Store, time: uint64) -> None:
previous_slot = get_current_slot(store)

update store time
store.time = time

current_slot = get_current_slot(store)
Not a new epoch, return

if not (current_slot > previous_slot and compute_slots _since_epoch_start(current_slot)

return

Update store.justified_checkpoint if a better checkpoint is known

if store.best_justified_checkpoint.epoch > store.justified_checkpoint.epoch:
store.justified_checkpoint = store.best_justified_checkpoint

Figure 21.1: specs/phase@/fork-choice.md#on_tick.

Note from Figure 21.1 that on_tick updates store.justified_checkpoint to
store.best_justified_checkpoint under certain conditions. There is only one function in
Prysm that performs such an update: updateHead. updateHead is called in
ReceiveAttestationNoPubsub in beacon-chain/blockchain/receive attestation.go
and in ReceiveBlock in beacon-chain/blockchain/receive_block.go, but nowhere else.

// Determined the head from the fork choice service and saves its new data
// (head root, head block, and head state) to the local service cache.
func (s *Service) updateHead(ctx context.Context, balances []Juint64) error {
ctx, span := trace.StartSpan(ctx, "blockChain.updateHead")
defer span.End()

// To get the proper head update, a node first checks its best justified
// can become justified. This is designed to prevent bounce attack and
// ensure head gets its best justified info.
if s.bestJustifiedCheckpt.Epoch > s.justifiedCheckpt.Epoch {

s.justifiedCheckpt = s.bestJustifiedCheckpt

if err := s.cacheJustifiedStateBalances(ctx,

bytesutil.ToBytes32(s.justifiedCheckpt.Root)); err != nil {
return err
}

Figure 11.2: beacon-chain/blockchain/head.go#L30-144.

© 2020 Trail of Bits Prysm Assessment | 57

https://github.com/ethereum/eth2.0-specs/blob/dev/specs/phase0/fork-choice.md#on_tick
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/blockchain/head.go#L30-L44

Exploit Scenario
Alice runs a Prysm node. Because her node does not implement on_tick, it falls out of sync
with other nodes on the network. Alice suffers financial loss as a result.

Recommendation

Short term, implement the on_tick method from the Eth 2.0 specification. This will
eliminate a discrepancy that currently exists between the Eth 2.0 specification and Prysm’s
implementation of it.

Long term, maintain a mapping of Eth 2.0 function to their corresponding implementations

in Prysm. This will make it easier for developers to understand how Prysm implements the
specification. It will also help to identify gaps in the implementation.

© 2020 Trail of Bits Prysm Assessment | 58

22. Hardcoded contract bytecode

Severity: Medium Difficulty: Low
Type: Data Validation Finding ID: TOB-PRYSM-022

Target: contracts/deposit-contract/depositContract.go

Description
The compiled bytecode is included in depositContract.go as a variable instead of read in
from a machine-only writable file such as bytecode.bin.

// DepositContractBin is the compiled bytecode used for deploying new contracts.

var DepositContractBin =
"9x74010000000000000000000000000000000000VVVVV6020526F 7 T fFfffffffffffffffff60405

27FFFFFF. ..

// DeployDepositContract deploys a new Ethereum contract, binding an instance of
DepositContract to it.
func DeployDepositContract(auth *bind.TransactOpts, backend bind.ContractBackend,
_drain_address common.Address) (common.Address, *types.Transaction, *DepositContract, error)
{

parsed, err := abi.JSON(strings.NewReader(DepositContractABI))

if err I= nil {

return common.Address{}, nil, nil, err
}

address, tx, contract, err := bind.DeployContract(auth, parsed,

common.FromHex(DepositContractBin), backend, _drain_address)

Figure 22.1 Use of the DepositContractBin variable (depositContract.go#L32-142)

0x7401006020526F 7 F I fffffffffffffffffffffff...

Figure 22.2 bytecode.bin that should be used instead of DepositContractBin
Exploit Scenario
Alice is a Prysm developer that accidentally commits a change to the bytecode variable that
is used in the deposit contract. Invalid bytecode is used for a deposit which causes the
deposits to fail.

Recommendation

Short term, read in the bytecode for deposits only from the bytecode.bin file that currently
stores it. Update pipelines so that only automation changes this value and it is never
expected to be edited directly by developers. We also recommend putting in a git
pre-commit hook to prevent developers from committing to this file.

Long term, remove any manual processes required for releasing code and automate for
consistency and reliability purposes.

© 2020 Trail of Bits Prysm Assessment | 59

https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/contracts/deposit-contract/depositContract.go#L32-L42
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/contracts/deposit-contract/bytecode.bin
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/contracts/deposit-contract/bytecode.bin

23. Files and directories created with os.MkdirAll and ioutil. WriteFile are
not ensured to have correct permissions

Severity: Low Difficulty: High

Type: Access Controls Finding ID: TOB-PRYSM-023
Target: tools/genesis-state-gen/main.go, tools/enr-calculator/main.go,
tools/interop/export-genesis/main.go,
beacon-chain/core/state/interop/write_block to disk.go,
beacon-chain/core/state/interop/write_state_to_disk.go,
validator/accounts/v2/wallet.go, beacon-chain/db/kv/kv.go,
validator/db/kv/db.go

Description

The os.MkdirAll function does not enforce permissions on directories already present on
the filesystem. Therefore, if an attacker were to pre-populate a directory with
overly-permissive permissions, those permissions will not be altered.

Similarly, the ioutil.WriteFile and os.OpenFile functions have the same attributes, but
applied to files. If an attacker pre-populates a file with overly-permissive permissions, the
permissions will not be changed.

This could lead to an attacker pre-populating a file or directory with overly-permissive
permissions, allowing modifications or reading after the program has started.

Exploit Scenario

Eve has local access to a machine where generation of the genesis state occurs. Eve
pre-populates directories with overly permissive permissions where prysm will write
potentially sensitive values, or perform sensitive operations.

Recommendation

Short term, when using os.MkdirAll, check all directories in the path and validate their
owner and permissions before performing operations on them. This will help avoid
situations where sensitive information is written to a pre-existing attacker-controlled path.

Long term, enumerate files and directories for their expected permissions overall, and
build validation to ensure appropriate permissions are applied before creation and upon
use. Ideally, this validation should be centrally defined and used throughout the
applications as a whole.

© 2020 Trail of Bits Prysm Assessment | 60

24. Response body not closed in tests

Severity: Low Difficulty: Medium

Type: Denial of Service Finding ID: TOB-PRYSM-024
Target: shared/prometheus/service_test.go,
shared/prometheus/logrus_collector_test.go, endtoend/helpers/helpers.go

Description

Multiple tests within Prysm neglect necessary Go hygiene practices such as closing the
response body after an http request. If tests are run on a machine frequently enough, this
memory leak could have unintended consequences.

func writeURLRespAtPath(url string, filePath string) error {
resp, err := http.Get(url)
if err I= nil {
return err

b
body, err := ioutil.ReadAll(resp.Body)
if err I= nil {
return err
b
file, err := os.Create(filePath)
if err I= nil {
return err
b

if _, err := file.Write(body); err != nil {
return err

}

return nil

Figure 24.1 Failure to call resp.Body.Close() in a heavily used helper function
(endtoend/helpers/helpers.go#l 165-L182).

Exploit Scenario

A Prysm developer is regularly running the tests locally on the same machine they are
using to engage with the beacon-chain and make deposits. Rapidly running the tests
continually outpaces the garbage collection and an out of memory (OOM) error causes
their node to crash.

Recommendation
Short term, validate that all file handlers are closed to avoid putting undue stress on the
garbage collector.

Long term, standardize idiomatic Go practices such as proper handling of response bodies.

© 2020 Trail of Bits Prysm Assessment | 61

https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/endtoend/helpers/helpers.go#L165-L182

25. Password guesses should be limited to prevent brute force

Severity: Medium Difficulty: Low

Type: Access Controls Finding ID: TOB-PRYSM-025
Target: validator/accounts/v2/accounts_deposit.go,
validator/keymanager/v2/direct/direct.go

Description

Throughout the codebase, passwords are minimally validated for baseline requirements
and are not checked for number of attempts. In a situation like an account deposit, this
makes it vulnerable to a brute force attack trying all possible passwords for another user’s
account.

func PasswordPrompt(promptText string, validateFunc func(string) error) (string, error) {
var responseValid bool
var response string
for !responseValid {
fmt.Printf("%s: ", au.Bold(promptText))
bytePassword, err := terminal.ReadPassword(int(os.Stdin.Fd()))
if err I= nil {
return "", err
}
response = strings.TrimRight(string(bytePassword), "\r\n")
if err := validateFunc(response); err != nil {
fmt.Printf("\nEntry not valid: %s\n", au.BrightRed(err))
} else {
fmt.Println("")
responseValid = true
¥
}

return response, nil

}

Figure 25.1 PasswordPrompt doesn’t track number of attempts, nor do any of its references track
attempts (shared/promptutil/prompt.go#L99-L117).

Exploit Scenario

Eve has a validator’s wallet address. She attempts to direct transfer funds into her wallet
with their password. She is able to iterate through many guesses for passwords and steals
funds.

Recommendation
Short term, limit the number of password guesses a user can attempt by implementing an
exponential backoff strategy on password acceptance timing.

Long term, implement monitoring surrounding excessively high password guess frequency
against an account and consider locking it until the user can validate their identity.

© 2020 Trail of Bits Prysm Assessment | 62

https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/shared/promptutil/prompt.go#L99-L117

26. Premature exit under certain conditions in
blockchain.Service.ancestor

Severity: Medium Difficulty: Undetermined
Type: Undefined Behavior Finding ID: TOB-PRYSM-026
Target: beacon-chain/blockchain/process_block_helpers.go

Description

The function blockchain.Service.ancestor is supposed to find an ancestral root from a
given root and slot. The function can incorrectly return an error when the root is not in the
service's forkChoiceStore.

The code in question appears in Figure 26.1. If s.forkChoiceStore.HasParent(r) is true,
then s.forkChoiceStore.AncestorRoot is called to find the root in forkChoiceStore.
AncestorRoot can fail with a "node index out of range" error (recall Figure 20.1). In such
a case, the service's beaconDB should be queried, as the root could lie there. Currently,
beaconDB is not queried.

// ancestor returns the block root of an ancestry block from the input block root.
//

// Spec pseudocode definition:

// def get_ancestor(store: Store, root: Root, slot: Slot) -> Root:

// block = store.blocks[root]

// if block.slot > slot:

// return get_ancestor(store, block.parent_root, slot)

// elif block.slot == slot:

// return root

// else:

// # root is older than queried slot, thus a skip slot. Return most recent root prior
to slot

// return root

func (s *Service) ancestor(ctx context.Context, root []byte, slot uinté64) ([]byte, error) {

// Get ancestor root from fork choice store instead of recursively looking up blocks
in DB.
// This is most optimal outcome.
if s.forkChoiceStore.HasParent(r) {
return s.forkChoiceStore.AncestorRoot(ctx, r, slot)

}
signed, err := s.beaconDB.Block(ctx, r)
if err I= nil {
return nil, errors.Wrap(err, "could not get ancestor block")
}

Figure 26.1: beacon-chain/blockchain/process_block_helpers.go#L245-1276.

Exploit Scenario
The above bug in ancestor makes it impossible for Prysm nodes to reach consensus with
other Eth 2.0 nodes. A fork in the network results.

Recommendation

© 2020 Trail of Bits Prysm Assessment | 63

https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/blockchain/process_block_helpers.go#L245-L276

Short term, adjust ancestor so that if s.forkChoiceStore.AncestorRoot returns a "node
index out of range" error, beaconDB is queried. This will eliminate a bug that can cause
ancestor to incorrectly return an error.

Long term, require additional review of functions whose implementations do not obviously
match the specification. For example, as can be seen from Figure 26.1, Prysm’s ancestor
does not directly correspond to the specification’s get_ancestor, though they are meant to
achieve the same functionality. Functions such as ancestor warrant additional scrutiny.

© 2020 Trail of Bits Prysm Assessment | 64

A.Vulnerability Classifications

Vulnerability Classes

Class

Description

Access Controls

Related to authorization of users and assessment of rights

Auditing and Logging

Related to auditing of actions or logging of problems

Authentication

Related to the identification of users

Configuration

Related to security configurations of servers, devices or software

Cryptography

Related to protecting the privacy or integrity of data

Data Exposure

Related to unintended exposure of sensitive information

Data Validation

Related to improper reliance on the structure or values of data

Denial of Service

Related to causing system failure

Documentation

Related to documenting or recording use scenarios

Error Reporting

Related to the reporting of error conditions in a secure fashion

Patching

Related to keeping software up to date

Session Management

Related to the identification of authenticated users

Timing

Related to race conditions, locking or order of operations

Undefined Behavior

Related to undefined behavior triggered by the program

Severity Categories

Severity

Description

Informational

The issue does not pose an immediate risk, but is relevant to security
best practices or Defense in Depth

Undetermined

The extent of the risk was not determined during this engagement

Low The risk is relatively small or is not a risk the customer has indicated is
important
Medium Individual user’s information is at risk, exploitation would be bad for

© 2020 Trail of Bits

Prysm Assessment | 65

client's reputation, moderate financial impact, possible legal
implications for client

High

Large numbers of users, very bad for client's reputation, or serious
legal or financial implications

Difficulty Levels

Difficulty

Description

Undetermined

The difficulty of exploit was not determined during this engagement

Low Commonly exploited, public tools exist or can be scripted that exploit
this flaw

Medium Attackers must write an exploit, or need an in-depth knowledge of a
complex system

High The attacker must have privileged insider access to the system, may

need to know extremely complex technical details or must discover
other weaknesses in order to exploit this issue

© 2020 Trail of Bits

Prysm Assessment | 66

B. Code Maturity Classifications

Code Maturity Classes

Category Name

Description

Access Controls

Related to the authentication and authorization of components.

Arithmetic

Related to the proper use of mathematical operations and
semantics.

Assembly Use

Related to the use of inline assembly.

Centralization

Related to the existence of a single point of failure.

Upgradeability

Related to contract upgradeability.

Function
Composition

Related to separation of the logic into functions with clear purpose.

Front-Running

Related to resilience against front-running.

Key Management

Related to the existence of proper procedures for key generation,
distribution, and access.

Monitoring

Related to use of events and monitoring procedures.

Specification

Related to the expected codebase documentation.

Testing &
Verification

Related to the use of testing techniques (unit tests, fuzzing, symbolic
execution, etc.).

Rating Criteria

Rating Description

_ The component was reviewed and no concerns were found.
Satisfactory The component had only minor issues.
Moderate The component had some issues.

The component led to multiple issues; more issues might be present.

The component was missing.

© 2020 Trail of Bits Prysm Assessment | 67

Not Applicable The component is not applicable.

Not Considered | The component was not reviewed.

Further The component requires further investigation.
Investigation
Required

© 2020 Trail of Bits Prysm Assessment | 68

C. Code Quality Recommendations

The following recommendations are not associated with specific vulnerabilities. However,
they enhance code readability and may prevent the introduction of vulnerabilities in the
future.

e beacon-chain/gateway/server/main.go#L44 and many other locations:
Use net.JoinHostPort instead of fmt.Sprintf for IPv6 and future compatibility.

e The Bazel resource file (.bazelrc) insists on an outdated version of Bazel
(3.2.0). Since September 2, 2020, version 3.5.0 is available. Consider upgrading to
the newer version.

e epoch/precompute/slashing test.go#L99 and several other locations: An
improper conversion from an int to a string is performed:

t.Run(string(i), func(t *testing.T) {

Use fmt.Sprint(...) instead.

e Verify that your implementations satisfy their interfaces using global
declarations of the form:

var _ Interface = (*Implementation)(nil)

Such declarations have the additional benefit of alerting readers to which
implementations satisfy which interfaces. For instance, one could add the following
line to beacon-chain/sync/initial-sync/service.go:

var _ sync.Checker = (*Service)(nil)

e validator/node/node.go#L55-L64, validator/node/node.go#L338-L349, other
locations: Overusing contexts to store values that aren't relevant to their use in
concurrency and cancelling patterns breaks the Single Responsibility Principle and
muddies the code waters. Instead of storing values for setup on the context
getting passed in, consider the WithOption pattern that is idiomatic for Go.

e shared/sliceutil/slice.go#L51, shared/sliceutil/slice.go#L166,
shared/sliceutil/slice.go#L272: A condition of the form (X-Y) == @ appears.
Such a condition could be written more simply as X ==

e fuzz/BUILD.bazel#L110-L116: The block_fuzz_test incorrectly uses Sigma
Prime’s block_header corpus. The test should use Sigma Prime’s block corpus.

go_fuzz_test(
name = "block_fuzz_test",
srcs = [
"block_fuzz.go",

© 2020 Trail of Bits Prysm Assessment | 69

https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/gateway/server/main.go#L44
https://golang.org/pkg/net/#JoinHostPort
https://github.com/bazelbuild/bazel/tree/3.5.0
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/epoch/precompute/slashing_test.go#L99
https://stackoverflow.com/a/27804417
https://stackoverflow.com/a/27804417
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/validator/node/node.go#L55-L64
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/validator/node/node.go#L338-L349
https://www.sohamkamani.com/golang/options-pattern/
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/shared/sliceutil/slice.go#L51
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/shared/sliceutil/slice.go#L166
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/shared/sliceutil/slice.go#L272
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/fuzz/BUILD.bazel#L110-L116

] + COMMON_SRCS,

corpus = "@sigp_beacon_fuzz_corpora//:current_mainnet_block_header",

corpus_path =
"external/sigp_beacon_fuzz_corpora/0-11-0/mainnet/block_header",

e beacon-chain/core/helpers/slot_epoch.go#L77-L83,
slasher/detection/testing/utils.go#L51-L53: The function StartSlot is
implemented in two places, once with overflow checking and once without.
Consider consolidating the implementations.

e beacon-chain/core/helpers/validators.go#L284: Consider moving
ComputeProposerIndexWithValidators to
beacon-chain/core/helpers/validators_test.go. The function is marked as
deprecated, and beacon-chain/core/helpers/validators_test.go is the only
place where it is used. Consider also adding tests to verify that
ComputeProposerIndex and ComputeProposerIndexWithValidators produce the
same results.

e shared/attestationutil/attestation_utils.go#L157-1L171: The function
attestationutil.IsvValidAttestationIndices implements a complicated
algorithm for checking whether an array of indices is sorted. It should be
sufficient to check that each index in the array is less than the next.

e beacon-chain/p2p/handshake.go#L29-L143: Convoluted nesting of function
definitions makes code unreadable and unnecessarily complex.

© 2020 Trail of Bits Prysm Assessment | 70

https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/core/helpers/slot_epoch.go#L77-L83
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/slasher/detection/testing/utils.go#L51-L53
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/core/helpers/validators.go#L284
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/shared/attestationutil/attestation_utils.go#L157-L171
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-chain/p2p/handshake.go#L29-L143

D. Ineffectual Assignments

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/blockchain/head.go#L214

ineffectual assignment to set |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/blockchain/process_block.go#L238

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/cache/depositcache/deposits_cache.go#L82

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/cache/depositcache/deposits_cache.go#L104

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/cache/depositcache/deposits_cache.go#L116

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/cache/depositcache/deposits_cache.go#L147

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/cache/depositcache/deposits_cache.go#L157

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/cache/depositcache/deposits_cache.go#L164

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/cache/depositcache/deposits_cache.go#L176

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/cache/depositcache/deposits_cache.go#L193

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/cache/depositcache/deposits_cache.go#L209

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/cache/depositcache/deposits_cache.go#L228

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/cache/depositcache/pending_deposits.go#L33

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/cache/depositcache/pending_deposits.go#L70

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/cache/depositcache/pending_deposits.go#L94

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/cache/depositcache/pending_deposits.go#L132

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/core/epoch/precompute/new. go#L20

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/db/kafka/export_wrapper.go#L50

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-

© 2020 Trail of Bits Prysm Assessment | 71

chain/db/kv/archived_point.go#L13

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/db/kv/archived_point.go#L28

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/db/kv/archived_point.go#L46

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/db/kv/archived_point.go#L63

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/db/kv/blocks.go#L111

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/db/kv/blocks.go#L230

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/db/kv/blocks.go#L265

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/db/kv/blocks.go#L385

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/db/kv/blocks.go#L452

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/db/kv/blocks.go#1480

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/db/kv/deposit_contract.go#L15

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/db/kv/deposit_contract.go#L30

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/db/kv/encoding.go#L17

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/db/kv/encoding.go#L31

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/db/kv/finalized_block_roots.go#L163

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/db/kv/operations.go#L59

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/db/kv/operations.go#L72

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/db/kv/powchain.go#L14

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/db/kv/powchain.go#L29

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/db/kv/regen_historical_states.go#L198

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-

© 2020 Trail of Bits Prysm Assessment | 72

chain/db/kv/slashings.go#L59

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/db/kv/slashings.go#L72

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/db/kv/slashings.go#L128

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/db/kv/slashings.go#L141

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/db/kv/state.go#L229

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/db/kv/state.go#L335

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/db/kv/state_summary.go#L69

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/db/kv/utils.go#L19

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/db/kv/utils.go#L38

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/db/kv/utils.go#L64

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/forkchoice/protoarray/helpers.go#L19

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/forkchoice/protoarray/nodes.go#L17

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/forkchoice/protoarray/nodes.go#L65

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/forkchoice/protoarray/nodes.go#L117

ineffectual assignment to newParentChild |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/forkchoice/protoarray/nodes.go#L212

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/forkchoice/protoarray/nodes.go#L280

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/forkchoice/protoarray/store.go#L65

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/operations/slashings/service.go#L33

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/operations/slashings/service.go#L75

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/operations/slashings/service.go#L175

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-

© 2020 Trail of Bits Prysm Assessment | 73

chain/operations/voluntaryexits/service.go#L59

ineffectual assignment to err |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/p2p/encoder/ssz.go#L90

ineffectual assignment to currentSlot |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/p2p/fork.go#L91

ineffectual assignment to requestedEpoch |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/rpc/beacon/validators.go#L38

ineffectual assignment to err |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/rpc/beacon/validators.go#L200

ineffectual assignment to activatedIndices |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/rpc/beacon/validators.go#L399

ineffectual assignment to exitedIndices |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/rpc/beacon/validators.go#L400

ineffectual assignment to slashedIndices |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/rpc/beacon/validators.go#L401

ineffectual assignment to ejectedIndices |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/rpc/beacon/validators.go#L402

ineffectual assignment to activationQueueChurn |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/rpc/beacon/validators.go#L593

ineffectual assignment to exitQueueChurn |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/rpc/beacon/validators.go#L598

ineffectual assignment to b |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/rpc/beacon/validators.go#L807

ineffectual assignment to err |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/rpc/node/server.go#L105

ineffectual assignment to err |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/rpc/validator/proposer.go#L692

ineffectual assignment to fTrie |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/state/state_trie.go#L439

ineffectual assignment to err |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/state/stategen/getter.go#L209

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/state/stategen/setter.go#L61

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/sync/initial-sync/blocks_fetcher_peers.go#lL127

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/sync/rpc_goodbye.go#L39

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-
chain/sync/rpc_metadata.go#L21

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/beacon-

© 2020 Trail of Bits Prysm Assessment | 74

chain/sync/validate_aggregate_proof.go#L235

ineffectual assignment to offset |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/fuzz/ge
nerated.ssz.go#L27

ineffectual assignment to offset |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/fuzz/ge
nerated.ssz.go#L121

ineffectual assignment to offset |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/fuzz/ge
nerated.ssz.go#L215

ineffectual assignment to offset |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/proto/b
eacon/p2p/vl/generated.ssz.go#L866

ineffectual assignment to offset |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/proto/b
eacon/p2p/vl/generated.ssz.go#L1462

ineffectual assignment to err |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/shared/
depositutil/deposit.go#L138

ineffectual assignment to neighbor |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/shared/
trieutil/sparse_merkle.go#L105

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/slasher
/db/kv/block_header.go#L19

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/slasher
/db/kv/block_header.go#L52

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/slasher
/db/kv/block_header.go#L103

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/slasher
/db/kv/block_header.go#L117

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/slasher
/db/kv/chain_data.go#L15

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/slasher
/db/kv/chain_data.go#L34

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/slasher
/db/kv/kv.go#L43

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/slasher
/db/kv/proposer_slashings.go#L17

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/slasher
/db/kv/proposer_slashings.go#L63

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/slasher
/db/kv/proposer_slashings.go#L82

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/slasher
/db/kv/proposer_slashings.go#L106

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/slasher
/db/kv/proposer_slashings.go#L126

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/slasher

© 2020 Trail of Bits Prysm Assessment | 75

/db/kv/spanner.go#L81

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/slasher
/db/kv/spanner.go#L163

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/slasher
/db/kv/spanner.go#L202

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/slasher
/db/kv/spanner.go#L261

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/slasher
/db/kv/spanner.go#L316

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/slasher
/db/kv/spanner.go#L333

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/slasher
/db/kv/spanner_new.go#L100

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/slasher
/db/kv/validator_id_pubkey.go#L15

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/slasher
/db/kv/validator_id_pubkey.go#L28

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/slasher
/db/kv/validator_id_pubkey.go#L43

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/slasher
/detection/detect.go#L129

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/slasher
/detection/service.go#L221

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/slasher
/detection/service.go#L229

ineffectual assignment to err |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/slasher
/rpc/server.go#L151

ineffectual assignment to err |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/tools/k
eystores/main.go#L101

ineffectual assignment to err |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/tools/k
eystores/main.go#L138

ineffectual assignment to err |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/tools/p
cli/main.go#L179

ineffectual assignment to keystoresToBackup |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/validat
or/accounts/v2/accounts_backup.go#L106

ineffectual assignment to err |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/validat
or/accounts/v2/wallet.go#L113

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/validat
or/db/kv/manage.go#L34

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/validat

© 2020 Trail of Bits Prysm Assessment | 76

or/db/kv/manage.go#L47

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/validat
or/db/kv/proposal_history.go#L19

ineffectual assignment to ctx |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/validat
or/db/kv/proposal_history.go#L44

ineffectual assignment to err |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/validat
or/keymanager/v2/derived/derived. go#L293

ineffectual assignment to err |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/validat
or/keymanager/v2/direct/direct.go#L244

ineffectual assignment to password |
https://github.com/prysmaticlabs/prysm/blob/245c18784eda370ea3218e8704651edad763978d/validat
or/keymanager/v2/direct/direct.go#L372

© 2020 Trail of Bits Prysm Assessment | 77

